Skip to main content

Biologic disease modifying antirheumatic drugs and Janus kinase inhibitors in paediatric rheumatology – what we know and what we do not know from randomized controlled trials

Abstract

Background

Biologic disease modifying antirheumatic drugs (bDMARDs) and Janus Kinase (JAK) inhibitors are prescribed in adult and paediatric rheumatology. Due to age-dependent changes, disease course, and pharmacokinetic processes paediatric patients with inflammatory rheumatic diseases (PiRD) differ from adult rheumatology patients.

Methods

A systematic literature search for randomized clinical trials (RCTs) in PiRD treated with bDMARDs/JAK inhibitors was conducted on Medline, clinicaltrials.gov, clinicaltrialsregister.eu and conference abstracts as of July 2020. RCTs were included if (i) patients were aged ≤20 years, (ii) patients had a predefined rheumatic diagnosis and (iii) RCT reported predefined outcomes. Selected studies were excluded in case of (i) observational or single arm study or (ii) sample size ≤5 patients. Study characteristics were extracted.

Results

Out of 608 screened references, 65 references were selected, reporting 35 unique RCTs. All 35 RCTs reported efficacy while 34/3 provided safety outcomes and 16/35 provided pharmacokinetic data. The most common investigated treatments were TNF inhibitors (60%), IL-1 inhibitors (17%) and IL-6 inhibitors (9%). No RCTs with published results were identified for baricitinib, brodalumab, certolizumab pegol, guselkumab, risankizumab, rituximab, sarilumab, secukinumab, tildrakizumab, or upadacitinib. In patients with juvenile idiopathic arthritis (JIA) 25/35 RCTs were conducted. The remaining 10 RCTs were performed in non-JIA patients including plaque psoriasis, Kawasaki Disease, systemic lupus erythematosus and non-infectious uveitis. In JIA-RCTs, the control arm was mainly placebo and the concomitant treatments were either methotrexate, non-steroidal anti-inflammatory drugs (NSAID) or corticosteroids. Non-JIA patients mostly received NSAID. There are ongoing trials investigating abatacept, adalimumab, baricitinib, brodalumab, certolizumab pegol, etanercept, guselkumab, infliximab, risankizumab, secukinumab, tofacitinib and tildrakizumab.

Conclusion

Despite the FDA Modernization Act and support of major paediatric rheumatology networks, such as the Pediatric Rheumatology Collaborative Study Group (PRCSG) and the Paediatric Rheumatology International Trials Organization (PRINTO), which resulted in drug approval for PiRD indications, there are limited RCTs in PiRD patients. As therapy response is influenced by age-dependent changes, pharmacokinetic processes and disease course it is important to consider developmental changes in bDMARDs/JAK inhibitor use in PiRD patients. As such it is critical to collaborate and conduct international RCTs to appropriately investigate and characterize efficacy, safety and pharmacokinetics of bDMARDs/JAK inhibitors in paediatric rheumatology.

Background

Paediatric inflammatory rheumatic diseases (PiRDs) are complex rare chronic inflammatory conditions with risk of chronic morbidity and mortality affecting infants, children and adolescents [1]. PiRDs include different heterogeneous disease groups, such as the juvenile idiopathic arthritis (JIA), connective tissue diseases (CTD), systemic lupus erythematosus (SLE), vasculitis, uveitis and autoinflammatory diseases (AID). JIA is one of the most common PiRD groups and can be divided into different subgroups according to the International League of Associations for Rheumatology (ILAR) [2, 3]. In paediatric rheumatology, (i) responsive and valid instruments to assess disease activity and (ii) standardized outcome measurements are important to achieve defined treatment aims, to avoid disease burden and to optimize patients care [4,5,6,7]. Treatment aims in PiRD patients include control of systemic inflammation, prevention of structural damage, avoidance of disease comorbidities and drug toxicities, improvement of physiological growth and development, increase of the quality of life and enabling participation in social life. To achieve these treatment goals, treat-to-target (T2T) strategies similar to those used in adult rheumatology have been implemented in PiRD management [8,9,10]. To reach the defined treatment targets, different levels of disease activity require different treatment selections and dose adjustments [11]. The cytokine modulating effects of biologic disease modifying antirheumatic drugs (bDMARDs) or Janus kinase (JAK) inhibitors have enabled T2T strategies, since they allow important inflammatory disease pathways to be targeted [12,13,14,15]. Over the past 15 years, bDMARDs use has become essential in paediatric rheumatology and has markedly improved clinical outcomes [13, 15,16,17,18,19]. However, off-label use in PiRD patients is still common [20,21,22,23,24,25,26].

Although some rheumatologic diseases occur in paediatric and adult patients, considerable differences in disease symptoms, disease course and disease activity might exist [27,28,29,30,31,32]. Moreover, some PiRDs are not common or well known in adulthood [33,34,35,36]. For example, the JIA associated uveitis is the most frequent and potentially the most devastating extra-articular manifestation of the JIA, commonly affecting children aged 3 to 7 years [37]. Additionally, Kawasaki Disease (KD) is an acute inflammatory febrile vasculitis of mainly medium-sized arteries that typically affects children younger than 5 years [38]. Furthermore, PiRD patients differ from adult rheumatology patients in several physiological aspects, due to age-dependent changes, maturation processes, differences in body composition and pharmacokinetic (PK) processes, such as drug absorption, distribution, metabolism, and excretion [39,40,41,42,43,44,45]. All these aspects are important factors to consider in diagnosis and treatment. This highlights that paediatric drug development cannot simply mimic development strategies for adults, but has to respect paediatric pathophysiology and specific paediatric disease characteristics [46]. Nevertheless, it is common to use the same bDMARDs and JAK inhibitors in paediatric and adult rheumatology, and most paediatric trials and dosing regimens are performed on the basis of existing adult data [47].

The goal of this review is to assess the current state of knowledge obtained from previously performed randomized controlled trials (RCTs) in PiRD patients treated with bDMARDs and JAK inhibitors. In addition, an overview of approved bDMARDs and JAK inhibitors from the Food and Drug Administration (FDA) and European Medicines Agency (EMA) in paediatric and adult rheumatology is provided.

Methods

Information sources and search

A systemic literature search was conducted on Medline via PubMed, the US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (www.clinicaltrials.gov), and the EU Clinical Trials Register (www.clinicaltrialsregister.eu). The MeSH terms used for electronic search on PubMed and ClinicalTrials.gov are detailed in the supplementary material (supplementary data S1). Similar search terms were used for the EU Clinical Trials Register. The statistical and clinical sections of the New Drug Approval (NDA) web pages of regulatory authorities in the US and Europe were reviewed for approved drugs (www.fda.gov, www.ema.europa.eu). Abstract searches were conducted after conferences, including the American College of Rheumatology (ACR), the European League Against Rheumatism (EULAR), the International Society of Systemic Auto-Inflammatory Diseases (ISSAID), Société Francophone pour la Rhumatologie et les Maladies Inflammatoires en Pédiatrie (SOFREMIP) and the Pediatric Rheumatology European Society (PRES). Additionally, relevant studies were identified by manual search of the bibliographies of references retrieved from PubMed. For all literature sources, only English articles were screened.

Eligiblity and exclusion criteria

RCTs of patients aged 20 years and younger treated with predefined bDMARDs/JAK inhibitors were included if the sample size was at least five patients, and if PiRD diagnosis had been confirmed. The PiRDs included are listed in Table 1. The drugs and drug classes reviewed included the following: (i) Anti-CD20 agents: rituximab; (ii) CD80/86 inhibitors: abatacept; (iii) IL-1 inhibitors: anakinra, canakinumab, rilonacept; (iv) IL-6 inhibitors: tocilizumab, sarilumab; (v) IL-12/23 inhibitors: ustekinumab; (vi) IL-23 inhibitors: guselkumab, risankizumab, tildrakizumab; (vii) IL-17 inhibitors: secukinumab, ixekizumab, brodalumab; (viii) Tumour necrosis factor (TNF) inhibitors: adalimumab, etanercept, golimumab, infliximab, certolizumab pegol; (ix) BAFF inhibitors: belimumab; (x) JAK inhibitors: baricitinib, tofacitinib, upadacitinib. Studies must have at least included a relevant primary or secondary efficacy endpoint/outcome as detailed in the supplementary material (supplementary data S3). Consequently, studies were excluded if (i) the indication was not relevant, (ii) the population was not relevant, including studies which enrolled both adults and children with PiRD, (iii) the study design was not relevant including observational studies, single arm studies, reviews, meta-analyses and pooled analysis of multiple RCTs, (iv) treatment was not that as predefined, (v) the endpoint/outcome was not relevant, and/or (vi) the report was a duplicate of prior published results without any additional information.

Table 1 Defined diagnoses of paediatric inflammatory rheumatic diseases (PiRD) for literature search

Study selection and data collection process

Initial screening, based on retrieved abstracts, as well as the eligibility assessment based on full-text publications were performed by two independent review authors according to a review protocol (supplementary data S2). One scientist was responsible for the execution and documentation, and the other provided support as therapeutic area expert. Any discrepancies were resolved through discussion or consultation with a third independent reviewer. The primary reason for exclusion was documented for each excluded reference. Aggregate (summary) level data were extracted from each included trial by two independent review authors. The defined extracted variables for each RCTs included baseline demographic and clinical characteristics such as study design, location, patient population, sample size, age criteria, treatment and primary outcome/endpoint.

Results

Study selection

A systematic literature search was performed on July 26, 2020 using the predefined search criteria. A total of 608 references were screened, and 65 references for 35 uniquely identified RCTs performed in PiRD patients were selected for inclusion (Fig. 1). Of the references excluded, the large majority were due to irrelevant indication (56%, 302/543) or population (31%, 169/543). In total, the majority of RCTs were performed for TNF inhibitors (60%), IL-1 inhibitors (17%) and IL-6 inhibitors (9%). Only one RCT was available for the BAFF inhibitor belimumab, the JAK inhibitor tofacitinib, the IL-12/23 inhibitor ustekinumab, the IL-17 inhibitor ixekizumab, the TNF inhibitor golimumab and the CD 80/86 inhibitor abatacept. No RCTs with published results were identified for the anti-CD20 agent rituximab, the TNF inhibitor certolizumab pegol, the IL-6 inhibitor sarilumab, the IL-17 inhibitors brodalumab and secukinumab, the IL-23 inhibitors guselkumab, risankizumab and tildrakizumab and the JAK inhibitors baricitinib and upadacitinib (Table 2). Currently, there are no recruiting RCTs for sarilumab but there are two ongoing single-arm PK studies in sarilumab, NCT02776735 and NCT02991469 (data not shown). For the JAK inhibitors three Phase III RCTs are investigating baricitinib, and one Phase III global RCT is investigating tofacitinib in JIA patients (Table 3). Furthermore, there are ongoing studies for guselkumab, risankizumab, tildrakizumab, brodalumab, secukinumab and certolizumab pegol mainly in PiRD patients with psoriasis (Table 3). Additionally, some studies are recruiting to investigate adalimumab in JIA-associated uveitis, abatacept in OJIA, infliximab in KD and etanercept in OJIA and PJIA.

Fig. 1
figure1

Flow chart of study selection and reasons for study exclusion after literature search

Table 2 Overview of completed randomized controlled trials performed in paediatric rheumatology patients treated with bDMARDs/JAK inhibitors (July 2020)
Table 3 Ongoing or recruiting studies in paediatric patients with inflammatory rheumatic diseases (July 2020)

Study characteristics

Approximately two-thirds (25 out of 35) of the identified RCTs were conducted in JIA patients and the remaining ten RCTs were performed in non-JIA patients, including KD, plaque psoriasis, SLE, and non-infectious uveitis (Tables 4 and 5). The mean/median age of children enrolled in the JIA RCTs ranged from 8 years (EudraCT 2008–005476-27, EudraCT 2008–005479-83) to 15.3 years (EudraCT 2007–003358-27). In contrast, the non-JIA patients included in RCTs had a mean/median age range varying between 2.2 and 15.2 years, with KD patients being younger (range 2.2 to 3.7 years). In JIA RCTs, the control was mainly placebo, and the concomitant background treatments were usually either methotrexate, NSAID or corticosteroids, whereas in non-JIA trials the control arm was a mixture of placebo or standard of care treatments and patients received mostly NSAID as background treatments (data not shown for the control arm). The primary efficacy outcome/endpoint in the JIA RCTs was mainly ACR Pedi 30/modified ACR Pedi 30 or disease flare (Table 4). Other instruments to assess the primary outcome were count of joints with active arthritis, the assessment of Spondyloarthritis International Society 40% score (ASAS 40), inactive disease, treatment failure and improvement of laser flare photometry (Table 4). In non-JIA patients, efficacy outcomes/endpoints varied due to heterogeneous subgroups. The primary efficacy outcome/endpoint of RCTs in KD was mainly related to fever, whereas for plaque psoriasis the Psoriasis Area and Severity Index (PASI 75), or the Physician Global Assessment (PGA) was used (Table 5). The RCT addressing SLE used the SLR response index (SRI 4), whereas the primary outcome/endpoint in non-infectious uveitis was assessed with uveitis disease activity using the Standardization of Uveitis Nomenclature (SUN) criteria, AC cells and vitreous haze. The majority of the JIA RCTs were global studies or otherwise conducted in either Europe or the United States, with one study (NCT00144599) located in Japan (data not shown). The non-JIA RCTs took place either in North America, Europe or globally (data not shown). In particular, KD RCTs took place mainly in Asia or the United States. Details for JIA and non-JIA RCTs are shown in Tables 4 and 5. All non-JIA studies were of a parallel study design, while in JIA studies there was a mixture of parallel and withdrawal study designs (Tables 4 and 5). The main conclusion of the majority of the studies (in terms of meeting the primary endpoint/outcome) was that the bDMARDs evaluated were more effective in comparison to placebo or standard of care (Tables 4 and 5).

Table 4 Overview and general characteristics of identified reviewed randomized controlled trials performed in JIA patients (July 2020)
Table 5 Overview and general characteristics of identified reviewed randomized controlled trials performed in non-JIA patients (July 2020)

Approved bDMARDs and JAK inhibitors in paediatric and adult rheumatology

In march 2020, the FDA has approved all 22 reviewed drugs, including bDMARDs and JAK inhibitors for adult rheumatology, whereas the EMA has approved 21 (Table 6). For PiRD patients, 10 bDMARDs (EMA) and 11 (FDA) have been approved (Table 6). Not surprisingly, the more recently approved bDMARDs in adult rheumatology and the JAK inhibitors have mostly not yet been approved for PiRD patients. Infliximab is approved for several rheumatologic indications in adulthood including rheumatoid arthritis (RA), PsA, ankylosing spondylitis, and plaque psoriasis, but is not approved for any PiRD indication so far. In paediatrics, infliximab is still restricted for in-label use in paediatric chronic inflammatory bowel diseases. Furthermore, there are some differences between the FDA and EMA in bDMARDs and JAK approvals. For example, the FDA has approved rilonacept for the treatment of the Cryopyrin-associated periodic syndrome (CAPS) in adults and children aged 12 years and older, whereas EMA has not. Particularly relevant for the PiRD patients are the different age limitations for different bDMARDs, and varying age restriction for different PiRD diagnoses. No bDMARDs are approved in children younger than 2 years with the exception of anakinra, which is approved by the EMA for the age ≥ 8 months. The age limitations have changed over the last couple of years, and today the common age categories are ≥2, ≥4, ≥6, or ≥ 12 years. A detailed overview about paediatric bDMARDs approvals, indications and age limitations by the EMA and FDA in March 2020 compared with adult rheumatology is given in Table 6.

Table 6 Overview of bDMARDs and JAK inhibitors approved in adult and paediatric rheumatology (March 2020)

Discussion

This review indicates that reported data from RCTs characterizing efficacy, safety and/or PK, remains limited for several prescribed bDMARDs and JAK inhibitors in PiRD patients. As RCTs are robust research methods to determine cause-effect relationships between intervention and outcome, they are important to generate evidence in basic, translational and clinical research and can improve management of patients [112]. In the past, several clinical trials were conducted in PiRD with support of research networks in paediatric rheumatology, such as the Pediatric Rheumatology Collaborative Study Group (PRCSG) and the Paediatric Rheumatology International Trials Organisation (PRINTO) resulting in bDMARDs approval for some PiRD indications [19, 113]. This review indicates that TNF inhibitors are the most studied bDMARDs in PiRD patients, particularly in the JIA group. JIA is one of the most commonly diagnosed PiRDs with a prevalence of 16/100,000 to 150/100,000 [3]. In several JIA sub-groups, treatment with TNF inhibition is recommended, particularly when conventional disease modifying antirheumatic drugs (cDMARDs) cannot achieve the defined target [114, 115]. One of the first FDA-approved TNF inhibitors for polyarticular JIA treatment was etanercept in 1999, followed by adalimumab in 2008. This might explain why a majority of RCTs were performed for etanercept. Up to now, no JAK inhibitor is approved for PiRD patients. JAK inhibitors can be administered orally and therefore this treatment approach might be of particular interest in paediatric rheumatology, explaining why several RCTs are currently performed for JAK inhibitors. For several bDMARDs, a latency in drug approval for PiRD patients can be observed with a delay ranging between 1 year to 9 years. However, around 50% of reviewed therapeutic drugs are currently not approved for PiRD patients. Off-label and unlicensed drug use is frequent in paediatric patient populations [116, 117] and a considerable number of PiRD patients has to be treated with off-label bDMARDs or JAK inhibitors as no approved drugs are available for their age group, the PiRD indication or in general [20,21,22,23, 25, 26]. Off-label use is often of great concern to the families of the affected children [17]. In addition, it seems that off-label and unlicensed drug use in children is associated with increased risk of medication errors and adverse events [118,119,120]. As infants and children with PiRD differ greatly from adult rheumatology patients the lack of paediatric PK data for bDMARDs and JAK inhibitors, can result in over- and under-dosing [42, 47, 121]. While under-dosing/low drug concentrations can result in drug-antibodies and drug insufficiency with uncontrolled chronic inflammation and disease burden, over-dosing can be associated with serious short- and long-term safety events [122,123,124]. There are data suggesting that based on the body weight, the clearance of several drugs is higher in paediatrics than in adults [39]. In PiRD patients, particularly in infants and younger children, there are data for bDMARDs and JAKs indicating a need for more frequent drug administration due to shorter half-life or the need for higher weight based drug dosages to achieve the defined therapy target [121, 125,126,127]. Moreover, it seems that subcutaneously administered bDMARDs are absorbed faster in young children [44]. As the therapy outcomes in PiRD patients is influenced by these age-dependent PK processes and the disease course, it is crucial to understand the developmental changes to optimize bDMARDs and JAK inhibitor dosing in paediatric rheumatology [39,40,41,42, 44, 46, 47]. As a consequence, the FDA Modernization Act stimulates the conduct of dedicated clinical studies to enhance understanding of PK, efficacy-safety balance, and optimal dosing of drugs in paediatric patients [128]. Nevertheless, concern has been raised that trial discontinuation, and nonpublication with associated risk of publication bias, seems to be common in paediatric patients [129, 130]. Slow recruitment rates in rare paediatric diseases can be challenging for paediatric trials, and poor recruitment seems to be one of the major risks for early termination or discontinuation of such studies [130]. These observations highlight the value of established research networks in paediatric rheumatology, such as PRCSG and PRINTO, in conducting clinical studies in PiRD patients as efficacy, safety and PK data obtained from PiRD patients to optimize treatment are warranted.

This review has several limitations. Despite a comprehensive search strategy and independent reviewer processes, there might be a risk of a reporting bias as unpublished RCTs were not included. Furthermore, this review does not include observational studies, single arm studies or RCTs including both children and adults. We cannot rule out that not all conducted RCTs in PiRDs were identified, despite a rigorous screening and review process. We have included RCTs with patients aged 20 years and younger, although this upper age limit of 20 years constituted the risk of having studies performed mainly in adolescents and young adults. To address this bias we have reported for each analysed RCT the age criteria and the median/mean age. As several included RCTs had an upper age criteria between 17 to 20 years, we would have missed otherwise these studies if we have limited the search to the age criteria 16 or 18 years.

Conclusion

In summary, paediatric rheumatology patients differ from adult rheumatology patients in many aspects. As therapeutic drug response is influenced by age-dependent PK processes and disease course, it is important to consider developmental changes when prescribing bDMARDs or JAK inhibitors in PiRD patients. As such, it is critical to conduct international multicentre studies in PiRD patients to enroll a sufficiently high patient number in a reasonable period of time with the goal to appropriately investigate and characterize PK, efficacy and safety for bDMARDs and JAK inhibitors. More efficacy and safety data, ideally combined with PK data from PiRD patients will optimize bDMARDs and JAK inhibitor use in paediatric rheumatology.

Availability of data and materials

not applicable.

Abbreviations

AID:

Autoinflammatory diseases

cDMARDS:

conventional disease modifying antirheumatic drugs

bDMARDS:

Biologic disease modifying antirheumatic drugs

CTD:

Connective tissue diseases

EMA:

European Medicines Agency

ERA:

Enthesitis-related juvenile idiopathic arthritis

FDA:

Food and Drug Administration

ILAR:

International League of Associations for Rheumatology

IL:

Interleukin

JAK:

Janus kinase

JIA:

Juvenile idiopathic arthritis

KD:

Kawasaki disease

NSAID:

Non-steroidal anti-inflammatory drugs

OJIA:

Oligoarticular juvenile idiopathic arthritis

PiRD:

Pediatric inflammatory rheumatic diseases

PJIA:

Polyarticular juvenile idiopathic arthritis

PK:

Pharmacokinetics

PsA:

Psoriatic juvenile idiopathic arthritis

RA:

Rheumatoid arthritis

RF:

Rheumatoid factor

RCT:

Randomized controlled trials

SJIA:

Systemic juvenile idiopathic arthritis

SLE:

Systemic lupus erythematosus

TNF:

Tumour necrosis factor

T2T:

Treat to target

References

  1. 1.

    Teague M. Pediatric rheumatologic diseases: a review for primary care NPs. Nurse Pract. 2017;42(9):43–7.

    PubMed  Article  Google Scholar 

  2. 2.

    Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31(2):390–2.

    PubMed  Google Scholar 

  3. 3.

    Ravelli A, Martini A. Juvenile idiopathic arthritis. Lancet. 2007;369(9563):767–78.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Ruperto N, Martini A. International research networks in pediatric rheumatology: the PRINTO perspective. Curr Opin Rheumatol. 2004;16(5):566–70.

    PubMed  Article  Google Scholar 

  5. 5.

    Ruperto N, Ravelli A, Falcini F, Lepore L, Buoncompagni A, Gerloni V, et al. Responsiveness of outcome measures in juvenile chronic arthritis. Italian Pediatric Rheumatology Study Group. Rheumatology. 1999;38(2):176–80.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Consolaro A, Giancane G, Schiappapietra B, Davi S, Calandra S, Lanni S, et al. Clinical outcome measures in juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2016;14(1):23.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Consolaro A, Ruperto N, Bazso A, Pistorio A, Magni-Manzoni S, Filocamo G, et al. Development and validation of a composite disease activity score for juvenile idiopathic arthritis. Arthritis Rheum. 2009;61(5):658–66.

    PubMed  Article  Google Scholar 

  8. 8.

    Ravelli A, Consolaro A, Horneff G, Laxer RM, Lovell DJ, Wulffraat NM, et al. Treating juvenile idiopathic arthritis to target: recommendations of an international task force. Ann Rheum Dis. 2018;77(6):819–28.

    PubMed  Google Scholar 

  9. 9.

    Hinze CH, Oommen PT, Dressler F, Urban A, Weller-Heinemann F, Speth F, et al. Development of practice and consensus-based strategies including a treat-to-target approach for the management of moderate and severe juvenile dermatomyositis in Germany and Austria. Pediatr Rheumatol Online J. 2018;16(1):40.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Hansmann S, Lainka E, Horneff G, Holzinger D, Rieber N, Jansson AF, et al. Consensus protocols for the diagnosis and management of the hereditary autoinflammatory syndromes CAPS, TRAPS and MKD/HIDS: a German PRO-KIND initiative. Pediatr Rheumatol Online J. 2020;18(1):17.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Smolen JS. Treat-to-target: rationale and strategies. Clin Exp Rheumatol. 2012;30(4 Suppl 73):S2–6.

    PubMed  Google Scholar 

  12. 12.

    McCoy SS, Stannard J, Kahlenberg JM. Targeting the inflammasome in rheumatic diseases. Transl Res. 2016;167(1):125–37.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Ruperto N, Martini A. Current and future perspectives in the management of juvenile idiopathic arthritis. Lancet Child Adolesc Health. 2018;2(5):360–70.

    PubMed  Article  Google Scholar 

  14. 14.

    Maggi L, Mazzoni A, Cimaz R, Liotta F, Annunziato F, Cosmi L. Th17 and Th1 lymphocytes in Oligoarticular juvenile idiopathic arthritis. Front Immunol. 2019;10:450.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. Annu Rev Med. 2014;65:223–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Vanoni F, Minoia F, Malattia C. Biologics in juvenile idiopathic arthritis: a narrative review. Eur J Pediatr. 2017;176(9):1147–53.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Sterba Y, Ilowite N. Biologics in pediatric rheumatology: quo Vadis? Curr Rheumatol Rep. 2016;18(7):45.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Garg S, Wynne K, Omoyinmi E, Eleftheriou D, Brogan P. Efficacy and safety of anakinra for undifferentiated autoinflammatory diseases in children: a retrospective case review. Rheumatol Adv Pract. 2019;3(1):rkz004.

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Brunner HI, Rider LG, Kingsbury DJ, Co D, Schneider R, Goldmuntz E, et al. Pediatric rheumatology collaborative study group - over four decades of pivotal clinical drug research in pediatric rheumatology. Pediatr Rheumatol Online J. 2018;16(1):45.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Jung JY, Kim MY, Suh CH, Kim HA. Off-label use of tocilizumab to treat non-juvenile idiopathic arthritis in pediatric rheumatic patients: a literature review. Pediatr Rheumatol Online J. 2018;16(1):79.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Vitale A, Insalaco A, Sfriso P, Lopalco G, Emmi G, Cattalini M, et al. A snapshot on the on-label and off-label use of the Interleukin-1 inhibitors in Italy among rheumatologists and pediatric rheumatologists: a Nationwide multi-center retrospective observational study. Front Pharmacol. 2016;7:380.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Sanchez GAM, Reinhardt A, Ramsey S, Wittkowski H, Hashkes PJ, Berkun Y, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128(7):3041–52.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Gomez-Garcia F, Sanz-Cabanillas JL, Viguera-Guerra I, Isla-Tejera B, Nieto AV, Ruano J. Scoping review on use of drugs targeting interleukin 1 pathway in DIRA and DITRA. Dermatol Ther (Heidelb). 2018;8(4):539–56.

    Article  Google Scholar 

  24. 24.

    Woerner A, Belot A, Merlin E, Wouters C, Berthet G, Kondi A, et al. Prescribed but not approved: biologic agents used without approval in juvenile idiopathic arthritis in Switzerland, France and Belgium. Pediatr Rheumatol. 2014;12(1):P338.

    Article  Google Scholar 

  25. 25.

    Boyadzhiev M, Marinov L, Boyadzhiev V, Iotova V, Aksentijevich I, Hambleton S. Disease course and treatment effects of a JAK inhibitor in a patient with CANDLE syndrome. Pediatr Rheumatol Online J. 2019;17(1):19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Picco P, Brisca G, Traverso F, Loy A, Gattorno M, Martini A. Successful treatment of idiopathic recurrent pericarditis in children with interleukin-1beta receptor antagonist (anakinra): an unrecognized autoinflammatory disease? Arthritis Rheum. 2009;60(1):264–8.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Ozen S, Sonmez HE, Demir S. Pediatric forms of vasculitis. Best Pract Res Clin Rheumatol. 2018;32(1):137–47.

    PubMed  Article  Google Scholar 

  28. 28.

    Lei C, Huang Y, Yuan S, Chen W, Liu H, Yang M, et al. Takayasu Arteritis With Coronary Artery Involvement: Differences Between Pediatric and Adult Patients. Can J Cardiol. 2019.

  29. 29.

    Condie D, Grabell D, Jacobe H. Comparison of outcomes in adults with pediatric-onset morphea and those with adult-onset morphea: a cross-sectional study from the morphea in adults and children cohort. Arthritis Rheumatol. 2014;66(12):3496–504.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Tarr T, Derfalvi B, Gyori N, Szanto A, Siminszky Z, Malik A, et al. Similarities and differences between pediatric and adult patients with systemic lupus erythematosus. Lupus. 2015;24(8):796–803.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Fonseca R, Aguiar F, Rodrigues M, Brito I. Clinical phenotype and outcome in lupus according to age: a comparison between juvenile and adult onset. Reumatol Clin. 2018;14(3):160–3.

    PubMed  Article  Google Scholar 

  32. 32.

    Panupattanapong S, Stwalley DL, White AJ, Olsen MA, French AR, Hartman ME. Epidemiology and outcomes of Granulomatosis with Polyangiitis in pediatric and working-age adult populations in the United States: analysis of a large National Claims Database. Arthritis Rheumatol. 2018;70(12):2067–76.

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Denby KJ, Clark DE, Markham LW. Management of Kawasaki disease in adults. Heart. 2017;103(22):1760–9.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Piram M, Mahr A. Epidemiology of immunoglobulin a vasculitis (Henoch-Schonlein): current state of knowledge. Curr Opin Rheumatol. 2013;25(2):171–8.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Girschick H, Finetti M, Orlando F, Schalm S, Insalaco A, Ganser G, et al. The multifaceted presentation of chronic recurrent multifocal osteomyelitis: a series of 486 cases from the Eurofever international registry. Rheumatology. 2018;57(7):1203–11.

    CAS  Article  Google Scholar 

  36. 36.

    Rigante D, Vitale A, Natale MF, Lopalco G, Andreozzi L, Frediani B, et al. A comprehensive comparison between pediatric and adult patients with periodic fever, aphthous stomatitis, pharyngitis, and cervical adenopathy (PFAPA) syndrome. Clin Rheumatol. 2017;36(2):463–8.

    PubMed  Article  Google Scholar 

  37. 37.

    Constantin T, Foeldvari I, Anton J, de Boer J, Czitrom-Guillaume S, Edelsten C, et al. Consensus-based recommendations for the management of uveitis associated with juvenile idiopathic arthritis: the SHARE initiative. Ann Rheum Dis. 2018;77(8):1107–17.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, treatment, and long-term Management of Kawasaki Disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017;135(17):e927–e99.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Mahmood I. Pharmacokinetic considerations in designing pediatric studies of proteins, antibodies, and plasma-derived products. Am J Ther. 2016;23(4):e1043–56.

    PubMed  Article  Google Scholar 

  40. 40.

    van den Anker J, Reed MD, Allegaert K, Kearns GL. Developmental changes in pharmacokinetics and pharmacodynamics. J Clin Pharmacol. 2018;58(Suppl 10):S10–25.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Samardzic J, Allegaert K, Bajcetic M. Developmental pharmacology: a moving target. Int J Pharm. 2015;492(1–2):335–7.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Nigrovic PA, Raychaudhuri S, Thompson SD. Review: genetics and the classification of arthritis in adults and children. Arthritis Rheumatol. 2018;70(1):7–17.

    PubMed  Article  Google Scholar 

  44. 44.

    Malik P, Edginton A. Pediatric physiology in relation to the pharmacokinetics of monoclonal antibodies. Expert Opin Drug Metab Toxicol. 2018;14(6):585–99.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Moore P. Children are not small adults. Lancet. 1998;352(9128):630.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Allegaert K. Developmental Pharmacology - Special Issues During Childhood and Adolescence. Drug Res (Stuttg). 2018;68(S 01):S10–S1.

    CAS  Article  Google Scholar 

  47. 47.

    Renton WD, Ramanan AV. Better pharmacologic data the key to optimizing biological therapies in children. Rheumatology. 2020;59(2):271–2.

    PubMed  Article  Google Scholar 

  48. 48.

    Ruperto N, Lovell DJ, Quartier P, Paz E, Rubio-Perez N, Silva CA, et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet. 2008;372(9636):383–91.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Ruperto N, Lovell DJ, Li T, Sztajnbok F, Goldenstein-Schainberg C, Scheinberg M, et al. Abatacept improves health-related quality of life, pain, sleep quality, and daily participation in subjects with juvenile idiopathic arthritis. Arthritis Care Res. 2010;62(11):1542–51.

    Article  Google Scholar 

  50. 50.

    Ruperto N, Lovell DJ, Quartier P, Paz E, Rubio-Perez N, Silva CA, et al. Long-term safety and efficacy of abatacept in children with juvenile idiopathic arthritis. Arthritis Rheum. 2010;62(6):1792–802.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Ruperto N, Lovell D, Bohnsack J, Breedt J, Fischbach M, Lutz T, et al. Subcutaneous or IntravenousAbatacept Monotherapy in Pediatric Patients with Polyarticular-Course JIA: Results from Two Phase III Trials [abstract]. Arthritis Rheumatol. 2019; 71 (suppl 10). https://acrabstracts.org/abstract/subcutaneous-or-intravenous-abatacept-monotherapy-in-pediatric-patients-with-polyarticular-course-jia-results-from-two-phase-iii-trials/. Accessed 23 Mar 2020.

  52. 52.

    Ilowite N, Porras O, Reiff A, Rudge S, Punaro M, Martin A, et al. Anakinra in the treatment of polyarticular-course juvenile rheumatoid arthritis: safety and preliminary efficacy results of a randomized multicenter study. Clin Rheumatol. 2009;28(2):129–37.

    PubMed  Article  Google Scholar 

  53. 53.

    European Medicines Agency. CHMP extension of indication variation assessment report (anakinra), 2018. https://www.ema.europa.eu/en/documents/variation-report/kineret-h-c-363-ii-0056-epar-assessment-report-variation_en.pdf. (23 March 2020, date last accessed)

    Google Scholar 

  54. 54.

    Quartier P, Allantaz F, Cimaz R, Pillet P, Messiaen C, Bardin C, et al. A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann Rheum Dis. 2011;70(5):747–54.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Ruperto N, Brunner HI, Quartier P, Constantin T, Wulffraat N, Horneff G, et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N Engl J Med. 2012;367(25):2396–406.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    US Food and Drug Administration. Medical review and evaluation (canakinumab), 2016. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/125319Orig1s085,086,087MedR.pdf. (23 March 2020, date last accessed).

    Google Scholar 

  57. 57.

    European Medicines Agency. Summary of product characteristics (canakinumab), 2014. https://www.ema.europa.eu/en/documents/product-information/ilaris-epar-product-information_en.pdf. (23 March 2020, date last accessed)

    Google Scholar 

  58. 58.

    ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29 - . Identifier NCT00534495, Safety and Effectiveness of Rilonacept for Treating Systemic Juvenile Idiopathic Arthritis in Children and Young Adults; 2007 Sept 26 [cited 2020 July 15]; [about 14 screens]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT00534495

  59. 59.

    Ilowite NT, Prather K, Lokhnygina Y, Schanberg LE, Elder M, Milojevic D, et al. Randomized, double blind, placebo-controlled trial of the efficacy and safety of rilonacept in the treatment of systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 2014;66(9):2570–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Lovell DJ, Giannini EH, Reiff AO, Kimura Y, Li S, Hashkes PJ, et al. Long-term safety and efficacy of rilonacept in patients with systemic juvenile idiopathic arthritis. Arthritis Rheum. 2013;65(9):2486–96.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Brunner HI, Ruperto N, Zuber Z, Keane C, Harari O, Kenwright A, et al. Efficacy and safety of tocilizumab in patients with polyarticular-course juvenile idiopathic arthritis: results from a phase 3, randomised, double-blind withdrawal trial. Ann Rheum Dis. 2015;74(6):1110–7.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29 - . Identifier NCT00988221, A Study of Tocilizumab in Patients With Active Polyarticular Juvenile Idiopathic Arthritis; 2009 Oct 2 [cited 2020 July 15]; [about 50 screens]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT00988221

  63. 63.

    Brunner H, Chen C, Martini A, Espada G, Joos R, Akikusa J, et al. Disability and Health-Related Quality of Life Outcomes in Patients with Systemic or Polyarticular Juvenile Idiopathic Arthritis Treated with Tocilizumab in Randomized Controlled Phase 3 Trials [abstract]. Arthritis Rheumatol. 2019; 71 (suppl 10). https://acrabstracts.org/abstract/disability-and-health-related-quality-of-life-outcomes-in-patients-with-systemic-or-polyarticular-juvenile-idiopathic-arthritis-treated-with-tocilizumab-in-randomized-controlled-phase-3-trials/. Accessed 23 Mar 2020.

  64. 64.

    US Food and Drug Administration. Medical review and evaluation (tocilizumab), 2013. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/125276Orig1s064.pdf. (23 March 2020, date last accessed)

  65. 65.

    European Medicines Agency. Assessment report (tocilizumab), 2013. https://www.ema.europa.eu/en/documents/variation-report/roactemra-h-c-955-ii-0026-epar-assessment-report-variation_en.pdf (23 March 2020, date last accessed).

  66. 66.

    De Benedetti F, Brunner HI, Ruperto N, Kenwright A, Wright S, Calvo I, et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N Engl J Med. 2012;367(25):2385–95.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29 - . Identifier NCT00642460, A Study of RoActemra/Actemra (Tocilizumab) in Patients With Active Systemic Juvenile Idiopathic Arthritis (JIA); 2008 Mar 25 [cited 2020 July 15]; [about 64 screens]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT00642460

  68. 68.

    Yokota S, Imagawa T, Mori M, Miyamae T, Aihara Y, Takei S, et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet. 2008;371(9617):998–1006.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Burgos-Vargas R, Tse SM, Horneff G, Pangan AL, Kalabic J, Goss S, et al. A randomized, double blind, placebo-controlled multicenter study of Adalimumab in pediatric patients with Enthesitis-related arthritis. Arthritis Care Res. 2015;67(11):1503–12.

    CAS  Article  Google Scholar 

  70. 70.

    European Medicines Agency. Assessment report for paediatric studies submitted according to Article 46 of the Regulation (EC) No 1901/2006 (adalimumab), 2016. https://www.ema.europa.eu/en/documents/variation-report/humira-h-c-481-p46-0093-epar-assessment-report_en.pdf (23 March 2020, date last accessed).

    Google Scholar 

  71. 71.

    European Medicines Agency. CHMP extension of indication variation assessment report (adalimumab), 2014. https://www.ema.europa.eu/en/documents/variation-report/humira-h-c-481-ii-00127-epar-assessment-report-variation_en.pdf (23 March 2020, date last accessed).

    Google Scholar 

  72. 72.

    Horneff G, Fitter S, Foeldvari I, Minden K, Kuemmerle-Deschner J, Tzaribacev N, et al. Double blind, placebo-controlled randomized trial with adalimumab for treatment of juvenile onset ankylosing spondylitis (JoAS): significant short term improvement. Arthritis Res Ther. 2012;14(5):R230.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Lovell DJ, Ruperto N, Goodman S, Reiff A, Jung L, Jarosova K, et al. Adalimumab with or without methotrexate in juvenile rheumatoid arthritis. N Engl J Med. 2008;359(8):810–20.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    European Medicines Agency. Assessment report (adalimumab), 2011. https://www.ema.europa.eu/en/documents/variation-report/humira-h-c-481-ii-0081-g-epar-assessment-report-variation_en.pdf (23 March 2020, date last accessed).

    Google Scholar 

  75. 75.

    Ramanan AV, Dick AD, Jones AP, McKay A, Williamson PR, Compeyrot-Lacassagne S, et al. Adalimumab plus methotrexate for uveitis in juvenile idiopathic arthritis. N Engl J Med. 2017;376(17):1637–46.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    European Medicines Agency. Assessment report (adalimumab), 2017. https://www.ema.europa.eu/en/documents/variation-report/humira-h-c-481-ii-0163-epar-assessment-report-variation_en.pdf (23 March 2020, date last accessed).

    Google Scholar 

  77. 77.

    Quartier P, Baptiste A, Despert V, Allain-Launay E, Kone-Paut I, Belot A, et al. ADJUVITE: a double blind, randomised, placebo-controlled trial of adalimumab in early onset, chronic, juvenile idiopathic arthritis-associated anterior uveitis. Ann Rheum Dis. 2018;77(7):1003–11.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Horneff G, Foeldvari I, Minden K, Trauzeddel R, Kummerle-Deschner JB, Tenbrock K, et al. Efficacy and safety of etanercept in patients with the enthesitis-related arthritis category of juvenile idiopathic arthritis: results from a phase III randomized, double-blind study. Arthritis Rheumatol. 2015;67(8):2240–9.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Lovell DJ, Giannini EH, Reiff A, Cawkwell GD, Silverman ED, Nocton JJ, et al. Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric rheumatology collaborative study group. N Engl J Med. 2000;342(11):763–9.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    US Food and Drug Administration. Medical review and evaluation (etanercept), 1999. https://web.archive.org/web/20161024172432/http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/ucm088846.pdf (23 March 2020, date last accessed).

    Google Scholar 

  81. 81.

    ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29 - . Identifier NCT03780959, Safety and Efficacy of Etanercept (Recombinant Human Tumor Necrosis Factor Receptor Fusion Protein [TNFR:Fc]) in Children With Juvenile Rheumatoid Arthritis (JRA); 2018 Dec 19 [cited 2020 July 15]; [about 12 screens]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT03780959

  82. 82.

    ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29 - . Identifier NCT03781375, Etanercept Plus Methotrexate Versus Methotrexate Alone in Children With Polyarticular Course Juvenile Rheumatoid Arthritis; 2018 Dec 19 [cited 2020 July 15]; [about 13 screens]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT03781375

  83. 83.

    Wallace CA, Giannini EH, Spalding SJ, Hashkes PJ, O'Neil KM, Zeft AS, et al. Trial of early aggressive therapy in polyarticular juvenile idiopathic arthritis. Arthritis Rheum. 2012;64(6):2012–21.

    PubMed  Article  Google Scholar 

  84. 84.

    Wallace CA, Giannini EH, Spalding SJ, Hashkes PJ, O'Neil KM, Zeft AS, et al. Clinically inactive disease in a cohort of children with new-onset polyarticular juvenile idiopathic arthritis treated with early aggressive therapy: time to achievement, total duration, and predictors. J Rheumatol. 2014;41(6):1163–70.

    PubMed  Article  Google Scholar 

  85. 85.

    ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29 - . Identifier NCT00078806, Safety and Efficacy Study of Etanercept (Enbrel®) In Children With Systemic Onset Juvenile Rheumatoid Arthritis; 2004 Mar 9 [cited 2020 July 15]; [about 24 screens]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT00078806

  86. 86.

    Hissink Muller PC, Brinkman DM, Schonenberg D, Koopman-Keemink Y, Brederije IC, Bekkering WP, et al. A comparison of three treatment strategies in recent onset non-systemic juvenile idiopathic arthritis: initial 3-months results of the BeSt for Kids-study. Pediatr Rheumatol Online J. 2017;15(1):11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Hissink Muller P, Brinkman DMC, Schonenberg-Meinema D, van den Bosch WB, Koopman-Keemink Y, Brederije ICJ, et al. Treat to target (drug-free) inactive disease in DMARD-naive juvenile idiopathic arthritis: 24-month clinical outcomes of a three-armed randomised trial. Ann Rheum Dis. 2019;78(1):51–9.

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Brunner HI, Ruperto N, Tzaribachev N, Horneff G, Chasnyk VG, Panaviene V, et al. Subcutaneous golimumab for children with active polyarticular-course juvenile idiopathic arthritis: results of a multicentre, double-blind, randomised-withdrawal trial. Ann Rheum Dis. 2018;77(1):21–9.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    European Medicines Agency. Assessment report (golimumab), 2016. https://www.ema.europa.eu/en/documents/variation-report/simponi-h-c-992-ii-0063-epar-assessment-report-variation_en.pdf (23 March 2020, date last accessed).

    Google Scholar 

  90. 90.

    Ruperto N, Lovell DJ, Cuttica R, Wilkinson N, Woo P, Espada G, et al. A randomized, placebo controlled trial of infliximab plus methotrexate for the treatment of polyarticular-course juvenile rheumatoid arthritis. Arthritis Rheum. 2007;56(9):3096–106.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Tynjala P, Vahasalo P, Tarkiainen M, Kroger L, Aalto K, Malin M, et al. Aggressive combination drug therapy in very early polyarticular juvenile idiopathic arthritis (ACUTE-JIA): a multicentre randomised open-label clinical trial. Ann Rheum Dis. 2011;70(9):1605–12.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Brunner H, Synoverska O, Ting T, Abud Mendoza C, Spindler A, Vyzhga Y, et al. Tofacitinib for the Treatment of Polyarticular Course Juvenile Idiopathic Arthritis: Results of a Phase 3 Randomized, Double-blind, Placebo-controlled Withdrawal Study [abstract]. Arthritis Rheumatol. 2019;71(suppl 10) https://acrabstracts.org/abstract/tofacitinib-for-the-treatment-of-polyarticular-course-juvenile-idiopathic-arthritis-results-of-a-phase-3-randomized-double-blind-placebo-controlled-withdrawal-study/. Accessed 23 Mar 2020.

  93. 93.

    Landells I, Marano C, Hsu MC, Li S, Zhu Y, Eichenfield LF, et al. Ustekinumab in adolescent patients age 12 to 17 years with moderate-to-severe plaque psoriasis: results of the randomized phase 3 CADMUS study. J Am Acad Dermatol. 2015;73(4):594–603.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29 - . Identifier NCT03073200, Study of Ixekizumab (LY2439821) in Children 6 to Less Than 18 Years With Moderate-to-Severe Plaque Psoriasis (Ixora-peds); 2017 Mar 08 [cited 2020 July 15]; [about 32 screens]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT03073200

  95. 95.

    Papp K, Thaci D, Marcoux D, Weibel L, Philipp S, Ghislain PD, et al. Efficacy and safety of adalimumab every other week versus methotrexate once weekly in children and adolescents with severe chronic plaque psoriasis: a randomised, double-blind, phase 3 trial. Lancet. 2017;390(10089):40–9.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    European Medicines Agency. Assessment report for paediatric studies submitted according to Article 46 of the Regulation (EC) No 1901/2006 (adalimumab), 2015. https://www.ema.europa.eu/en/documents/variation-report/humira-h-c-481-p46-0088-epar-assessment-report_en.pdf (23 March 2020, date last accessed).

    Google Scholar 

  97. 97.

    European Medicines Agency. Extension of indication variation assessment report (adalimumab), 2015. https://www.ema.europa.eu/en/documents/variation-report/humira-h-c-481-ii-0134-epar-assessment-report-extension_en.pdf (23 March 2020, date last accessed).

    Google Scholar 

  98. 98.

    ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29 - . Identifier NCT01251614, A Double Blind Study in Pediatric Subjects With Chronic Plaque Psoriasis, Studying Adalimumab vs. Methotrexate); 2010 Dec 2 [cited 2020 July 15]; [about 48 screens]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT01251614

  99. 99.

    Portman MA, Dahdah NS, Slee A, Olson AK, Choueiter NF, Soriano BD, et al. Etanercept With IVIg for Acute Kawasaki Disease: A Randomized Controlled Trial. Pediatrics. 2019;143(6).

  100. 100.

    Paller AS, Siegfried EC, Langley RG, Gottlieb AB, Pariser D, Landells I, et al. Etanercept treatment for children and adolescents with plaque psoriasis. N Engl J Med. 2008;358(3):241–51.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Langley RG, Paller AS, Hebert AA, Creamer K, Weng HH, Jahreis A, et al. Patient-reported outcomes in pediatric patients with psoriasis undergoing etanercept treatment: 12-week results from a phase III randomized controlled trial. J Am Acad Dermatol. 2011;64(1):64–70.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Siegfried EC, Eichenfield LF, Paller AS, Pariser D, Creamer K, Kricorian G. Intermittent etanercept therapy in pediatric patients with psoriasis. J Am Acad Dermatol. 2010;63(5):769–74.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Landells I, Paller AS, Pariser D, Kricorian G, Foehl J, Molta C, et al. Efficacy and safety of etanercept in children and adolescents aged > or = 8 years with severe plaque psoriasis. Eur J Dermatol. 2010;20(3):323–8.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    European Medicines Agency. Assessment report (etanercept), 2008. https://www.ema.europa.eu/en/documents/variation-report/enbrel-h-c-262-ii-94-epar-assessment-report-variation_en.pdf (23 March 2020, date last accessed).

    Google Scholar 

  105. 105.

    Han CL, Zhao SL. Intravenous immunoglobulin gamma (IVIG) versus IVIG plus infliximab in young children with Kawasaki disease. Med Sci Monit. 2018;24:7264–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Mori M, Hara T, Kikuchi M, Shimizu H, Miyamoto T, Iwashima S, et al. Infliximab versus intravenous immunoglobulin for refractory Kawasaki disease: a phase 3, randomized, open-label, active-controlled, parallel-group, multicenter trial. Sci Rep. 2018;8(1):1994.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107.

    Tremoulet AH, Jain S, Jaggi P, Jimenez-Fernandez S, Pancheri JM, Sun X, et al. Infliximab for intensification of primary therapy for Kawasaki disease: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet. 2014;383(9930):1731–8.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Jaggi P, Wang W, Dvorchik I, Printz B, Berry E, Kovalchin JP, et al. Patterns of fever in children after primary treatment for Kawasaki disease. Pediatr Infect Dis J. 2015;34(12):1315–8.

    PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29 - . Identifier NCT00589628, Multi Center Prospective Registry of Infliximab Use for Childhood Uveitis; 2008 Jan 10 [cited 2020 July 15]; [about 7 screens]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT00589628

  110. 110.

    Nino A, Bass D, Eriksson G, Hammer A, Ji B, Quasny H, Roth D. Efficacy and Safety of Intravenous Belimumab in Children with Systemic Lupus Erythematosus: An Across-Trial Comparison with the Adult Belimumab Studies [abstract]. Arthritis Rheumatol. 2019; 71 (suppl 10). https://acrabstracts.org/abstract/efficacy-and-safety-of-intravenous-belimumab-in-children-with-systemic-lupus-erythematosus-an-across-trial-comparison-with-the-adult-belimumab-studies/. Accessed 23 Mar 2020.

  111. 111.

    European Medicines Agency. Assessment report (belimumab), 2019. https://www.ema.europa.eu/en/documents/variation-report/benlysta-h-c-2015-ii-0062-epar-assessment-report-variation_en.pdf (23 March 2020, date last accessed).

    Google Scholar 

  112. 112.

    Bhide A, Shah PS, Acharya G. A simplified guide to randomized controlled trials. Acta Obstet Gynecol Scand. 2018;97(4):380–7.

    PubMed  Article  Google Scholar 

  113. 113.

    Ruperto N, Martini A. Networking in paediatrics: the example of the Paediatric rheumatology international trials organisation (PRINTO). Arch Dis Child. 2011;96(6):596–601.

    PubMed  Article  Google Scholar 

  114. 114.

    Beukelman T, Patkar NM, Saag KG, Tolleson-Rinehart S, Cron RQ, DeWitt EM, et al. 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: initiation and safety monitoring of therapeutic agents for the treatment of arthritis and systemic features. Arthritis Care Res. 2011;63(4):465–82.

    Article  Google Scholar 

  115. 115.

    Angeles-Han ST, Ringold S, Beukelman T, Lovell D, Cuello CA, Becker ML, et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the screening, monitoring, and treatment of juvenile idiopathic arthritis-associated uveitis. Arthritis Care Res. 2019;71(6):703–16.

    Article  Google Scholar 

  116. 116.

    Moulis F, Durrieu G, Lapeyre-Mestre M. Off-label and unlicensed drug use in children population. Therapie. 2018;73(2):135–49.

    PubMed  Article  Google Scholar 

  117. 117.

    Gore R, Chugh PK, Tripathi CD, Lhamo Y, Gautam S. Pediatric off-label and unlicensed drug use and its implications. Curr Clin Pharmacol. 2017;12(1):18–25.

    PubMed  Article  Google Scholar 

  118. 118.

    Conroy S. Association between licence status and medication errors. Arch Dis Child. 2011;96(3):305–6.

    PubMed  Article  Google Scholar 

  119. 119.

    Wimmer S, Neubert A, Rascher W. The safety of drug therapy in children. Dtsch Arztebl Int. 2015;112(46):781–7.

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Bellis JR, Kirkham JJ, Thiesen S, Conroy EJ, Bracken LE, Mannix HL, et al. Adverse drug reactions and off-label and unlicensed medicines in children: a nested case-control study of inpatients in a pediatric hospital. BMC Med. 2013;11:238.

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Kim H, Brooks KM, Tang CC, Wakim P, Blake M, Brooks SR, et al. Pharmacokinetics, pharmacodynamics, and proposed dosing of the Oral JAK1 and JAK2 inhibitor Baricitinib in pediatric and young adult CANDLE and SAVI patients. Clin Pharmacol Ther. 2018;104(2):364–73.

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Bartelds GM, Krieckaert CL, Nurmohamed MT, van Schouwenburg PA, Lems WF, Twisk JW, et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. Jama. 2011;305(14):1460–8.

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Skrabl-Baumgartner A, Seidel G, Langner-Wegscheider B, Schlagenhauf A, Jahnel J. Drug monitoring in long-term treatment with adalimumab for juvenile idiopathic arthritis-associated uveitis. Arch Dis Child. 2019;104(3):246–50.

    PubMed  Article  Google Scholar 

  124. 124.

    Nestorov I. Clinical pharmacokinetics of tumor necrosis factor antagonists. J Rheumatol Suppl. 2005;74:13–8.

    CAS  PubMed  Google Scholar 

  125. 125.

    Neven B, Marvillet I, Terrada C, Ferster A, Boddaert N, Couloignier V, et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 2010;62(1):258–67.

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Kuemmerle-Deschner JB, Hachulla E, Cartwright R, Hawkins PN, Tran TA, Bader-Meunier B, et al. Two-year results from an open-label, multicentre, phase III study evaluating the safety and efficacy of canakinumab in patients with cryopyrin-associated periodic syndrome across different severity phenotypes. Ann Rheum Dis. 2011;70(12):2095–102.

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Kuemmerle-Deschner JB, Hofer F, Endres T, Kortus-Goetze B, Blank N, Weissbarth-Riedel E, et al. Real-life effectiveness of canakinumab in cryopyrin-associated periodic syndrome. Rheumatology. 2016;55(4):689–96.

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Roberts R, Rodriguez W, Murphy D, Crescenzi T. Pediatric drug labeling: improving the safety and efficacy of pediatric therapies. Jama. 2003;290(7):905–11.

    PubMed  Article  Google Scholar 

  129. 129.

    Shamliyan T, Kane RL. Clinical research involving children: registration, completeness, and publication. Pediatrics. 2012;129(5):e1291–300.

    PubMed  Article  Google Scholar 

  130. 130.

    Pica N, Bourgeois F. Discontinuation and Nonpublication of Randomized Clinical Trials Conducted in Children. Pediatrics. 2016;138(3).

Download references

Acknowledgements

We thank Dr. Andrew Atkinson for his valuable inputs.

Funding

None.

Author information

Affiliations

Authors

Contributions

TW, CW, NZ, AW and MP have contributed to the design, data gathering and analysis. TW and CW performed the initial data screening and eligibility assessment. CW was responsible for the execution and documentation and TW provided support as therapeutic area expert. Any discrepancies were resolved through discussion or consultation with a third independent reviewer (MP). All authors (TW, CW, NZ, AW, MP) have contributed in preparation of the submitted manuscript. They were involved in drafting the work and critically revising. All authors have approved this version to be published and they agreed to be accountable for all aspects in the work in ensuring questions related to the accuracy or integrity of any part of the work appropriately investigated and resolved. All authors have agreed to the submission of this manuscript to Rheumatology.

Corresponding author

Correspondence to Tatjana Welzel.

Ethics declarations

Ethics approval and consent to participate

not applicable.

Consent for publication

not applicable.

Competing interests

All authors have nothing to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: Supplementary data S1.

Search terms. Supplementary data S2. Review protocol. Supplemetary data S3. Outcome/Endpoint inclusion criteria for literature search.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Welzel, T., Winskill, C., Zhang, N. et al. Biologic disease modifying antirheumatic drugs and Janus kinase inhibitors in paediatric rheumatology – what we know and what we do not know from randomized controlled trials. Pediatr Rheumatol 19, 46 (2021). https://doi.org/10.1186/s12969-021-00514-4

Download citation

Keywords

  • Randomized controlled trials
  • Paediatric rheumatology
  • Monoclonal antibodies
  • Efficacy
  • Safety
  • Pharmacokinetics
\