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Network analysis and juvenile idiopathic
arthritis (JIA): a new horizon for the
understanding of disease pathogenesis and
therapeutic target identification
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Abstract

Juvenile idiopathic arthritis (JIA) is a clinically diverse and genetically complex autoimmune disease. Currently, there
is very limited understanding of the potential underlying mechanisms that result in the range of phenotypes which
constitute JIA.
The elucidation of the functional relevance of genetic associations with phenotypic traits is a fundamental problem that
hampers the translation of genetic observations to plausible medical interventions. Genome wide association studies,
and subsequent fine-mapping studies in JIA patients, have identified many genetic variants associated with disease.
Such approaches rely on ‘tag’ single nucleotide polymorphisms (SNPs). The associated SNPs are rarely functional variants,
so the extrapolation of genetic association data to the identification of biologically meaningful findings can be a
protracted undertaking. Integrative genomics aims to bridge the gap between genotype and phenotype.
Systems biology, principally through network analysis, is emerging as a valuable way to identify biological pathways of
relevance to complex genetic diseases. This review aims to highlight recent findings in systems biology related to JIA in
an attempt to assist in the understanding of JIA pathogenesis and therapeutic target identification.

Keywords: Juvenile idiopathic arthritis, System biology, Network analysis

Note: Throughout this review the original terms are
used for the patients JIA or JRA as they occurred within
the original publications.

Background
Network analysis
The many molecular interactions that occur in living cells
and organisms can be represented by networks of genes
and proteins. These networks can be linked to disease
mechanisms and response to therapy to facilitate under-
standing and generate new insight. Here we present an

introduction as to how networks are generated using
‘omic datasets and show how they can be used to under-
stand both function (molecular phenotype) and predic-
tion/classification using juvenile idiopathic arthritis as an
exemplar condition of pediatric rheumatology (Fig. 1).
Network biology has developed as a method to study

the many interactions that occur in individual cells; this
has facilitated the understanding of the complex biological
processes which occur in molecular biology [1]. The re-
cent genome sequencing projects have provided a nearly
complete list of human gene products [2] along with the
development of connectivity maps between proteins [3]
and gene expression (GE) profiles for several tissues [4].
Network biology is able to identify relationships be-

tween diverse biological components, including genes,
proteins, metabolites and transcription factors [5] (Fig. 1).
The singular components are then analyzed in a bio-
logical model system to understand physical interac-
tions and functional relationships which can be
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potentially used to elucidate the pathophysiology of dif-
ferent conditions. The analysis of the structure of bio-
logical networks and ‘omic’ methodologies also allows
the identification of candidate disease-causing genes.
The aim of this review is to explain how the analysis

of biological networks can be carried out, and to illus-
trate how systems biology is impacting on our under-
standing of complex genetic diseases, with a particular
focus on juvenile idiopathic arthritis (JIA).

How do we visualize biological network models?
Biological networks are ‘graphs of connected nodes’ which
represent biological components connected through edges
to represent their specific relationships. These connec-
tions vary from physical to functional associations, and

from metabolic to regulatory pathways [5] (see Glossary
for definitions).
Several models have been used for network analysis

[1]. In Bayesian networks, the nodes represent bio-
logical variables and the edges conditional probabilities
between them. Due to their capacity for showing causal
relationship [6], Bayesian networks have been used in
several fields of systems biology, including pathway
modeling, quality assessment of protein-protein inter-
actions and functional annotation of proteins and GE
analysis [1]. However, the commonest representations
of biological networks are as “node and edge” diagrams,
where “nodes” represent proteins or genes and “edges”
represent the known interactions. These can be di-
rected, with an arrow representing “action” or “flow” of

Fig. 1 Network biology identifies the relationships between diverse biological components (1). The singular components are then analyzed in
a biological system, or interactome model (2) to understand the physical and functional relationships. The subsequent study of sub-networks
that might represent biological molecules functionally linked working in a coordinate manner (3) and the topological structure of a network
(4) are important to depict and prioritise a specific biological function (5)
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information, or un-directed, where connections repre-
sent interactions, Fig. 1.

The analysis of omic datasets using network approaches
Biological networks can be inferred using omic datasets
by mapping the data to models of all known protein-
protein or genetic interactions (“the human interac-
tome”) and creating a network model related to the
condition being examined [7]. An interactome, there-
fore, is a set of molecular interactions, both with direct
and inferred experimental evidence, that are involved
with the phenomenon being studied (Fig. 1). Different
omic datasets can be combined easily using this ap-
proach to allow multi-variate analysis and to increase
statistical certainty [8].
To perform a basic analysis of omic datasets, two or

more groups are generally compared statistically; how-
ever the main problem in this process is that the number
of comparisons is large, increasing the likelihood of false
positives. This phenomenon, to some extent, can be
dealt with by the application of a false discovery rate
(FDR) correction to the statistical test (for example
Benjamini-Hochberg [9]), however these corrections can
be harsh, particularly when small datasets are used, as is
often the case in pediatric medicine. The use of network
biology to position elements from omic datasets into
networks along with all known protein:protein and pro-
tein:genetic interactions allows the analysis of these data
sets in relation to their position within the human inter-
actome and this feature can additionally increase the
confidence in the analysis of omic data [10]. This
process is facilitated by the identification of “clusters”
within biological networks, which occur when changes
in local connectivity arise and consequently network el-
ements coalesce into groups that are associated with
biological function [11, 12]. Therefore, network analysis
can be used to permit a more error tolerant interpret-
ation of different types of omic datasets as clusters are
identified using multiple single elements from the omic
dataset [8, 13].
The development of transcriptomics, which includes

whole genome transcript data, has also enabled the
study of “upstream” regulators in the genome, another
approach facilitated by network analysis. Using this
method it is possible to group changes in transcriptomic
data based on the known action of upstream regulators,
such as transcription factors and microRNA (miRNA),
allowing the interpretation of integrated data to delin-
eate putative mechanisms [14]. Additionally, expression
quantitative trait locus (eQTL) data can be used to inte-
grate genetic and transcriptomic analysis [15].
An example of how transcriptomics has been used in

pediatric rheumatology is shown by the work in relation
to the identification of interleukin-1 GE changes in

children with systemic onset JIA. These observations
have resulted in the development of interleukin-1 block-
ade, which has been utilised to treat systemic onset JIA
and related autoinflammatory diseases. Overall, these
studies on GE helped in understanding the disease
pathogenesis of JIA with important implications for dir-
ect therapeutic targeting [16, 17].

Common software-based methods for network analysis
Several analytic methods for evaluating the relationship
between the properties of biological networks can be
used to assess biological function [8], as illustrated in
Fig. 1, with definitions provided in the Glossary. An ex-
ample is “cluster modularity”. This refers to the recog-
nition of sub-networks that might represent biological
molecules which are functionally linked and working in
a coordinate manner to achieve a definite biological
outcome [11, 18].
To enable the examination of extensively overlapping

network modules the ModuLand algorithm has recently
been developed. This applies the concept of community
centrality, which is an integrated measure of the influ-
ence of the network on one of its nodes or edges [11].
This approach overlaps well with other clustering
methods. It has provided an important new analytical
tool in that the overlap of network clusters can be quan-
tified, a feature that has a strong correlation to biological
function [11].
“Network motif” analysis represents the identification

of small networks, related to biological function, that are
over-represented when compared with a randomized
version of the same network [12]. Other important con-
cepts in network analysis related to function include
“node centrality” and “network robustness” [19] along
with “network alignment and comparison”, an approach
used to describe similarities between independent net-
works which has been particularly used to study the evo-
lutionarily conserved pathways [20].
It is also possible to compare positions within interac-

tome models to assess whether condition related changes
in network connectivity occur at a level greater than that
expected by random modeling [21]. This approach has
been driven by genome-wide association studies (GWAS)
requiring a need to prioritise SNPs based on supportive
functional evidence. The Disease Association Protein-
Protein Link Evaluator algorithm (DAPPLE) [http://www.
broadinstitute.org/mpg/dapple/dapple.php] is a useful tool
for such prioritization.
Different software-based methods can be used to gen-

erate biological networks. These utilize algorithms to
infer the relationship of omic changes with known in-
teractions in the literature or from other databases.
Open-access databases include Biogrid [7] and Reac-
tome [22]. The interactome models generated can be
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then visualized using Cytoscape, which is an open
source software platform for the analysis of complex
networks [23]. Network analysis is also a process
through which to increase confidence in the observa-
tions of differential GE by correlation with biological
function [24].
Ingenuity Pathway Analysis (IPA) software, widely

accessed and reported on by the scientific community,
has a network component to its analytical flow based
on the functional correlation of highly connected inter-
actome regions with target genes [24]. The IPA network
identification algorithm has proved to be very success-
ful but only in the in the context of no more than a few
hundred starting genes/proteins. A main feature of the
IPA network approach is the ranking of identified net-
works based on the statistical significance of the associ-
ated biological functions. This has limitations as it may
not reflect the interactome hierarchy involved in the
mechanism.
Analysis of network structure and topological analysis

can be derived when using the Cytoscape software plat-
form [23]. Using this approach it is possible to generate
a minimal essential network [MEN] [25, 26]. A MEN
represents the most functionally relevant elements of an
interactome model and can be used to assess biological
function [27].

Disease networks
Networks of biological interactions involved in disease
have been constructed and their properties have been
compared to gain insight into the pathogenesis of hu-
man disease [28, 29]. A knowledge of the network
properties of “disease genes” can inform key aspects
when researching complex diseases: it allows for the
identification of new disease genes; identifies new drug
targets; identifies biomarkers and enhances understand-
ing of the biological significance of disease-associated
DNA variations from GWAS or next-generation se-
quencing studies [28].
Recently, the “human diseasome” has been generated

by using network biology and combined datasets of all
known disease-gene associations [30, 31]. This has been
created on the principle that there is a consistent rela-
tionship between disease-causing genes and their prod-
ucts, and developed on a conceptual framework which
systematically links all recorded genetic disorders (the
“human disease phenome”) with the current complete
list of known disease-causing genes (the “human disease
genome”) [31]. From “the human diseasome” it has be-
come apparent that genes contributing to a common
disorder exhibit: (i) an increased propensity for their
products to co-interact through protein-protein interac-
tions (ii) have a tendency to be co-expressed in specific
tissues and (iii) tend to share common cellular and

functional characteristics, as annotated in the Gene
Ontology [1, 32].

Network analysis and JIA
To date, only a limited number of studies have
employed a network analysis component to research in-
volving JIA patients. The contributions each of these
has made to further our understanding of JIA patho-
genesis is discussed:

Role of neutrophils in the pathogenesis of polyarticular
JRA
GE arrays and RNA seq have been used to examine the
function of neutrophils in JIA [33, 34]. Jarvis et al. [33]
used computer modeling from 25 newly diagnosed
rheumatoid factor negative (RF-ve) polyarticular JRA pa-
tients. Fourteen of the children were studied on more
than one occasion to identify changes in GE patterns in
response to therapy. Ten healthy controls (ages 18–30
years) were also included. A computer model of differen-
tially expressed genes in the RF-ve polyarticular JRA
cases and control neutrophils was developed using the
PathwayAssist software. This identified up regulation
of the S100 proteins, a family of low molecular weight
proteins implicated in a variety of growth and immune
functions, in the patient group and revealed clusters of
genes independently or interdependently regulated by
interleukin-8 or interferon-γ. This network based ana-
lysis also showed significant associations between dif-
ferentially expressed genes and the regulation of
fundamental metabolic processes such as H2O2 pro-
duction and calcium influx.

Implications for JIA therapy
In an innovative approach Frank et al. [35] utilized net-
work analysis to examine the feasibility of using GE pro-
filing as a first step in understanding the structure of
pathogenic networks related to childhood onset rheum-
atic diseases. RF-ve polyarticular JIA patients (n = 14),
juvenile dermatomyositis patients (n = 17) and 11
healthy children were included in the study. GE differ-
ences in neutrophils and in peripheral blood mono-
nuclear cells (PBMCs) were examined. To better
understand the potential functional interactions between
the products of genes that were differentially expressed
in the childhood-onset rheumatic diseases relative to the
healthy controls these genes were analyzed using IPA
software. Of the 128 genes that were differentially
expressed in PBMCs from JIA patients relative to con-
trols seven networks were identified that each contained
12 or more differentially expressed genes. High connect-
ivity was found for tumor necrosis factor alpha (TNFα)
and interferon gamma (IFN-γ). Similarly, of 60 genes dif-
ferentially expressed in neutrophils between JIA patients
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and the controls IPA identified four networks that each
contained at least nine differentially expressed genes. NF
kappa B and the kinases ERK, p38MAPK and MAPK14
showed the highest connectivity.
Thus, the network analysis showed evidence of hub

and node structures, indicative of scale-free networks,
previously described for normal metabolic processes,
and identified the long-suspected pathologic hubs cen-
tering around TNFα and IFN-γ for JIA. One of the most
important features of scale-free networks is their relative
resistance to perturbation when peripheral nodes are tar-
geted. Only alterations in the hubs results in significant
alteration in the network [25, 36].
The most promising therapeutic targets are those di-

rected at pathologic hubs. Even if a gene shows strong
differential expression between children with disease and
control children, that gene is unlikely to be a promising
therapeutic target if it is a peripheral node. Proof-of-
concept for this in JIA comes from TNF inhibitors that
have, over the past 20 years, been highly successful in
the therapeutic management of JIA patients. TNFα is a
prominent hub in the pathology-associated metabolic
network in both neutrophils and PBMCs determined by
Frank et al. [35].

Identification of biomarkers of therapeutic response
Network analysis, using IPA, was used by Knowlton
et al. [37] to aid the identification of biomarkers for pre-
dicting response to therapy in RF-ve polyarticular JIA
patients. When children with active disease were com-
pared with children who had achieved clinical remission
while receiving medication 23 differentially expressed
genes were found, 22 of which were over-expressed in
the children with active disease. Network analysis, de-
rived via IPA, revealed a single network, central to which
is insulin. The functional significance of insulin to JIA
aetiopathogenesis, however, has not been determined.
Most recently Du et al. have shown that methotrexate

therapy in JIA is associated with mathematically defined
re-ordering of gene expression networks in children who
respond inadequately to therapy [38].

JIA subtypes and other autoimmune conditions
IPA was also used by Barnes et al. to identify differences
in peripheral blood GE in different subtypes of JIA pa-
tients [39]. Forty-six pathways that were overrepresented
in the PBMCs of JIA patients were compared with that
found in healthy children. The GE differences and rela-
tive contributions of each pathway differed between the
JIA subgroups. The number of over-represented path-
ways was greatest for the systemic onset JIA patient sub-
group (n = 34). This included up-regulation of innate
immune pathways, the peroxisome proliferator-activator

receptor (PPAR) signaling pathway and the complement
system and coagulation cascade.
More recently, in an attempt to identify common and

specific signatures of GE and protein-protein interac-
tions in autoimmune diseases [40], GE and protein-
protein interaction data from six autoimmune diseases
were compared, including 26 children with JRA. These
included 15 individuals with polyarticular course disease,
3 with pauciarticular onset, 9 with polyarticular onset
and 3 with systemic onset disease. Information regarding
rheumatoid factor (RF) status was missing on 7 children,
all of which were classified as having RF-ve disease.
From this heterogeneous cohort of arthritis subgroups a
cluster of 43 proteins specific to JRA was identified.
Multiple pathways were shared between JIA patients and
those from the other autoimmune conditions. These in-
cluded NF kappa B, IL-2, IL-6 and B cell receptor signal-
ing pathways. Hierarchical clustering however revealed
the GE signature of JRA patients to be relatively differ-
ent from the signatures of the other diseases. The
authors conducted their analysis using a multi-step ap-
proach. A large-scale data set of human protein-protein
interactions (PPI) network was used to compute, for
each gene in each of the 6 autoimmune diseases investi-
gated, a p-value based on the proteins that have PPIs
with the protein it encodes and their expression levels.
The focus was to attempt to detect post-transcriptional
regulatory changes in diseases based on mRNA mea-
surements. For this they invented the PPI p-value ap-
proach [40]. Replication of the findings, using the
application of the PPI p-value, needs to be undertaken.

JIA – age specific features
The individual subgroups recognized under the JIA
umbrella, defined by The International League of
Associations for Rheumatology (ILAR) classification,
are phenotypically varied.
The typical age of disease onset also depends on sub-

type (see JIA subtypes, Table 1). This age-specific vari-
ation in disease onset may be critical to understanding
disease aetiology and have implications for appropriate
treatment strategies.
Stevens et al. [36] employed network analysis of GE

data and have determined evolutionarily conserved
tissue-independent pathways associated with GE and
child development in multiple tissues. Specifically, using
cells of lymphoid origin from normal children, the ex-
pression of 688 genes (ANOVA FDR modified p-value,
q < 0.1) was associated with age, and subsets of these
genes formed clusters that correlated with the phases of
growth: including infancy, childhood, puberty and final
height. Network analysis on these clusters identified evo-
lutionarily conserved growth pathways (NOTCH, VEGF,
TGFβ, WNT and the glucocorticoid receptor) and the
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same observations were confirmed in other tissues stud-
ied, suggesting the existence of a tissue-independent
genetic program for human growth and development.
Overall, these findings highlight the existence of age-
dependent GE profiles. These are most likely to be rele-
vant to the appropriate selection of genes and pathways
as potential biomarkers of disease, or as age appropriate
drug targets, in age-related phenotypes, such as JIA.
Barnes et al. also described biological similarities based

on age definition in oligoarticular and polyarticular
subtypes of JIA [41]. Earlier observations made by
Hollenbach et al. [42], which showed that HLA disease
associations with DRB1;DQA1;DQB1 haplotypes con-
ferred variable risk according to JIA subgroup and age
at disease onset, had been made based on stratification
of the JIA patient population by age of disease onset at
or after 6 years of age. Utilizing this same age classifi-
cation, Barnes et al. investigated GE profiles from
PBMCs of JIA patients and healthy controls [41]. Prin-
cipal component based analysis confirmed age at dis-
ease onset to be an important characteristic for
oligoarticular and RF–ve polyarticular JIA subgroups.
The differential GE patterns indicated that pathologic

mechanisms differ between patients with early onset
(<6 years) disease compared to those with late-onset
(≥6 years) disease. This age correlated variability in GE
could have important implications for treatment inter-
ventions in JIA patients.

Network analysis of age related GE in JIA
We have extended the observations of Hollenbach et al.
and of Barnes et al. (Fig. 2). Specifically, interactome
models were generated for the early onset (<6 years) and
the late onset (≥6 years) disease age groups for RF-ve
polyarticular and oligoarticular JIA [41] patients, along
with a control group using combined data from Barnes
et al. 2010 [41] and Stevens et al. 2013 [36]. This JIA
specific age-related GE was used to determine associated
biological pathways which were either specific for RF-ve
polyarticular JIA or for oligoarticular JIA (Fig. 2). For the
age group < 6 years, for both these JIA subtypes, bio-
logical pathways related to DNA replication and cell
cycle were the most statistically significant pathways
identified (Fig. 2), whereas, for the older age group
(≥6 years) intracellular signalling pathways, including
growth factors and interleukins, were predominant.

Table 1 Juvenile idiopathic arthritis subtypes show specific age ranges for disease onset

Categories Characteristics % of total Onset age Sex ratio (F:M)

Systemic onset Arthritis and daily fever≥ 3 days, accompanied
by at least one of the following: evanescent
(non-fixed) erythematosus rash, generalised
lymph node enlargement, hepatomegaly or
splenomegaly (or both), serositis

4–17 Throughout childhood 1:1

Oligoarticular Arthritis affecting 1–4 joints during the first 6
months of disease

27–60 Early childhood (peak 2–4 years) 5:1

Persistent Arthritis affecting < 4 joints throughout the
disease course

40

Extended Arthritis affecting > 4 joints after the first 6
months of disease

20

Polyarticular Arthritis affecting > 5 joints during the first 6
months of disease

Rheumatoid factor positive Two or more positive tests for rheumatoid
factor at least 3 months apart

2–7 Late childhood or adolescence
(peak 12–14 years)

3:1

Rheumatoid factor negative Tests for rheumatoid factor negative 11–30 Early peak 2–4 years and late
peak 6–12 years

3:1

Juvenile psoriatic arthritis Arthritis and psoriasis, or arthritis and at least
2 of the following: dactylitis, nail pitting or
onycholysis, psoriasis in first degree relative

2–11 Late childhood or adolescence 1:0.95

Enthesitis related arthritis Arthritis and enthesitis, or arthritis or enthesitis
with at least 2 of the following: sacroiliac joint
tenderness or inflammatory lumosacral pain
(or both), HLA-B27 antigen positive, onset in
boy over 6 years old, acute anterior uveitis,
HLA-B27 associated disease in first degree relative

1–11 Early peak 2–4 years and late
peak 6–12 years

1:7

Undifferentiated arthritis Arthritis that fulfils criteria in no specific
category or meets criteria for more than
one category

11–21

Adapted from Prince et al. [43]
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These findings reveal age-related GE profiles in JIA,
strengthening the notion that different pathological pro-
cesses underlie the age of disease onset and the JIA sub-
group that manifests. The relevance of this age-related
GE in the successful therapeutic management of JIA
needs to be explored.

Conclusion
To date there has been limited application of systems
biology based approaches to JIA. Where network ana-
lysis has been applied to JIA it has supported the identi-
fication of specific biological pathways associated with
pathology, the identification of markers of response to
therapy and also helped with the clarification of the rela-
tionship of JIA to other autoimmune diseases.

Furthermore, network approaches to transcriptomic
datasets from JIA patients has shown a correlation be-
tween age and variability in GE that may be critical to
our understanding of individual JIA subgroups.
Applying network analysis to JIA, to integrate emer-

ging forms of data from multiple platforms, has the po-
tential to identify key pathways of importance. This in
turn can expedite our understanding of disease mecha-
nisms and reveal interactions that should be prioritised
for therapeutic benefit.
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ACR, American College of Rheumatology; DAPPLE, The Disease Association
Protein-Protein Link Evaluator algorithm; eQTL, expression quantitative trait
locus; FDR, false discovery rate; GE, gene expression; GWAS, genome-wide
association studies; IFN-γ, interferon gamma; ILAR, The International League

Fig. 2 Network analysis of age-related gene expression in JIA. Age-related gene expression in JIA and control pediatric groups was derived from
published sources (JIA & Controls: Barnes et al. [41], GSE 20307; Controls: Stevens et al. [36]). Age groups: Less than 6 years of age [<6], polyarticular JIA
n = 16 [657 genes], oligoarticular JIA n = 24 [530 genes], controls n = 63 [438 genes]; greater than or equal to 6 years of age [≥6], polyarticular JIA n =
28 [512 genes], oligoarticular JIA n = 16 [811 genes], controls n = 71 [415 genes]. (a) Interactome network models inferred from age-related
gene expression were generated using the BioGRID database (http://thebiogrid.org/; version 3.2.103); yellow = protein derived from gene with
age-related change in expression, blue = protein inferred to interact in association with age-related gene expression. Interactome models were
generated for the <6 and ≥6 age groups for polyarticular and oligoarticular JIA [41] along with the control group (combined data from Barnes
et al. [41] & Stevens et al. [36]). To generate JIA specific age-related interactome models the control networks were “subtracted” from the JIA
derived networks using the “network differences” plugin within Cytoscape 2.8.3 [23]. JIA specific age-related gene expression identified was
used to determine associated biological pathways (hypergeometric test with Benjamini-Hochberg false discovery rate modification [FDR];
performed using WEB-based GEne SeT AnaLysis Toolkit [Webgestalt; http://bioinfo.vanderbilt.edu/webgestalt/]). Top biological pathways
associated with age-related gene expression ranked by FDR modified p-value (b) specific for polyarticular JIA and (c) specific for
oligoarticular JIA
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Glossary
Systems Biology

Integration of complex data in biological systems from diverse experimental
sources using interdisciplinary tools.

Network Biology
Biology related to interactions between multiple genes and/or proteins.

Network Analysis
Studies the relationship between the structural properties of a network and
biological function.

Interactome
Biological network representing a whole set of direct or indirect interactions
related to a specific biological function.

Cluster Modularity
Distinct grouping of protein-protein or protein-gene interactions
within a network.

Node
A protein or gene positioned within a network.

Hub
A highly connected node within a network.

Node Centrality
Measures the centrality of nodes, with the identification of which
nodes are more “central” than others. Degree centrality of a node
refers to the number of edges attached to the node.

Network Robustness
It is a mathematical description of how the integrity of a network
responds to the random removal of single nodes.

Network Motifs
Recurrent and statistically significant sub-graphs or patterns within a
network.

Network Alignment and Comparison
Used to describe similarities between independent networks.
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