ORAL PRESENTATION **Open Access** # Stratification of patients with autoinflammatory phenotypes by interferon (IFN) score suggests a new group of IFN mediated autoinflammatory diseases with overlapping clinical phenotypes A Almeida de Jesus^{1*}, Z Deng², S Brooks², H Kim¹, G Montealegre¹, D Chapelle¹, Y Liu², B Marrero¹, L Malle¹, M O'Brien¹, W Goodspeed¹, Y Huang¹, P Hashkes³, G Nasrullayeva⁴, MT Terreri⁵, C Silva⁶, B Arabshahi⁷, K O'Neill⁸, M Punaro⁹, L Moorthy¹⁰, A Reinhardt¹¹, V Lilleby¹², J Niemela¹³, S Rosenzweig¹³, T Fleisher¹³, R Goldbach-Mansky^{1,13} From 8th International Congress of Familial Mediterranean Fever and Systemic Autoinflammatory Diseases Dresden, Germany. 30 September - 3 October 2015 # **Background** We have identified mutations in proteasome components as the cause of CANDLE syndrome and in *TMEM173/STING* as the cause for a severe vasculopathy and lung disease, SAVI. CANDLE and SAVI patients do not respond to IL-1 inhibition and consistently demonstrate marked up-regulation of IFN-inducible genes. Our data suggest innate immune dysregulation caused by chronic Type I IFN signaling in both conditions. # Objective We hypothesize that the presence of IFN signature may identify patients with autoinflammatory disease (AID) who have genetic mutations in other IFN regulating genes. ## **Methods** To identify patients with IFN signatures, RNA sequencing (RNA-seq) from whole blood RNA was performed using HiSeq 2000 Illumina[®] platform. Heatmaps with 64 IFN response genes were assessed. Whole exome sequencing (WES) was performed from whole blood DNA. # Results We identified 19 patients with marked upregulation of IFN inducible genes. WES was performed in 14 patients and parents (trios) and in 5 individual patients. Of the probands, 9/19 were female, 8/19 were Caucasian, 3 Asian, 2 Hispanic, 2 Norwegian and 4 had other ethnicities. All patients presented with immunodysregulatory phenotypes with clinical similarities to the previously described interferonopathies, including skin vasculitis/vasculopathy (9/19), panniculitis (12/19), myositis (5/19) and basal ganglion calcifications (5/19), but had no genetic diagnosis prior to NIH evaluation. The bioinformatics variant annotation, analysis and filtering workflow successfully identified mutations in IFN-regulating genes in 7 of the 19 probands. In one patient, we found a disease causing de novo and somatic mutation in TREX1. This patient also presented with an in-frame deletion in DHX9 inherited from her mother and a missense mutation in MAVS inherited from her father. In one patient, we identified a *de novo* mutation in DHX9 and this patient is also a compound heterozygous for mutations in *IFIH1/MDA5*. In a third patient, we found a missense mutation in TREX1 inherited from the mother and a heterozygous variant in MB21D1 (gene encoding cGAS) inherited from the father. A fourth patient with a clinical phenotype of CANDLE had two novel compound heterozygous mutations in PSMG2. Additionally, a male patient with lupus-like clinical and laboratory findings was found to have an X-linked mutation in TREX2 gene. All mutations described were confirmed by Sanger sequencing. Full list of author information is available at the end of the article ¹National Institutes of Health, Translational Autoinflammatory Diseases Section, Bethesda, USA ## Conclusion RNA-seq can be a tool for the identification of patients with an IFN signature and guide the search for disease causing variants in IFN-regulating genes by WES. However, disease causality of these mutations needs to be assessed in functional assays. Moreover the identification of patients with a type I interferon signature and a set of clinical features that are not seen in IL-1- mediated-AIDs allow stratification of a subset of AIDs that are typically "poor IL-1 responsive". Whether the IFN signature identifies a subset of patients that respond to the blockade of Type I IFN signaling needs to be further validated. #### Authors' details ¹National Institutes of Health, Translational Autoinflammatory Diseases Section, Bethesda, USA. ²National Institutes of Health, NIAMS, Bethesda, USA. ³Hebrew University School of Medicine, Jerusalem, Israel. ⁴Azerbaijan Medical University, Department of Immunology, Baku, Azerbaijan. ⁵Federal University of Sao Paulo, Sao Paulo, Brazil. ⁶University of Sao Paulo, Sao Paulo, Brazil. ⁷Inova Fairfax Hospital, Fairfax, USA. ⁸Riley Children's Hospital, Indianapolis, USA. ⁹Children's Medical Center Dallas, Dallas, USA. ¹⁰Robert Wood Johnson University Hospital, New Brunswick, USA. ¹¹University of Nebraska Medical Center, Omaha, USA. ¹²Rikshospitalet University Hospital, Oslo, Norway. ¹³National Institutes of Health, Department of Laboratory Medicine, Bethesda USA Published: 28 September 2015 ### doi:10.1186/1546-0096-13-S1-O35 Cite this article as: de Jesus *et al.*: Stratification of patients with autoinflammatory phenotypes by interferon (IFN) score suggests a new group of IFN mediated autoinflammatory diseases with overlapping clinical phenotypes. *Pediatric Rheumatology* 2015 13(Suppl 1):035. # Submit your next manuscript to BioMed Central and take full advantage of: - Convenient online submission - Thorough peer review - No space constraints or color figure charges - Immediate publication on acceptance - Inclusion in PubMed, CAS, Scopus and Google Scholar - Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit