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Abstract
Background  Juvenile Idiopathic Arthritis (JIA) is a condition that occurs when individuals under the age of 16 
develop arthritis that lasts for more than six weeks, and the cause is unknown. The development of JIA may be linked 
to serum metabolites. Nevertheless, the association between JIA pathogenesis and serum metabolites is unclear, and 
there are discrepancies in the findings across studies.

Methods  In this research, the association between JIA in humans and 486 serum metabolites was assessed 
using genetic variation data and genome-wide association study. The identification of causal relationships was 
accomplished through the application of univariate Mendelian randomization (MR) analysis. Various statistical 
methods, including inverse variance weighted and MR-Egger, were applied to achieve this objective. To ensure 
that the findings from the MR analysis were trustworthy, a number of assessments were carried out. To ensure the 
accuracy of the obtained results, a range of techniques were utilised including the Cochran Q test, examination of the 
MR-Egger intercept, implementation of the leave-one-out strategy, and regression analysis of linkage disequilibrium 
scores. In order to identify the specific metabolic pathways associated with JIA, our primary objective was to perform 
pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes.

Results  Two-sample summary data MR analyses and sensitivity analyses showed that five metabolites were 
significantly causally associated with JIA, including two risk factors—kynurenine (odds ratio [OR]: 16.39, 95% 
confidence interval [CI]: 2.07-129.63, p = 5.11 × 10− 6) and linolenate (OR: 16.48, 95% CI: 1.32-206.22, p = 0.030)—and 
three protective factors—3-dehydrocarnitine (OR: 0.32, 95% CI: 0.14–0.72, p = 0.007), levulinate (4-oxovalerate) 
(OR: 0.40, 95% CI: 0.20–0.80, p = 0.010), and X-14,208 (phenylalanylserine) (OR: 0.68, 95% CI: 0.51–0.92, p = 0.010). 
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Introduction
Juvenile idiopathic arthritis (JIA) encompasses a vari-
ety of intricate and diverse disorders characterized by 
persistent inflammation, mainly observed in the syno-
vial membranes and this chronic inflammatory process 
significantly heightens the risk of degenerative changes 
occurring in the osteocartilaginous tissues [1]. The preva-
lence of JIA is 3.8–400 per 100,000 proportion [1]. JIA, 
a condition primarily affecting children under the age of 
16, is characterized by symptoms such as swelling, pain, 
and restricted joint movement that persists for a mini-
mum of 6 weeks, according to research conducted by the 
International League of Associations for Rheumatology 
[2, 3]. In the early stage, there may be severe symptom, 
including macrophage activation syndrome and synovi-
tis, potentially leading to multi-organ damage [4]. Carti-
lage damage and bone erosion may occur as the disease 
progresses, leading to joint deformities and functional 
impairment, affecting the quality of life and increas-
ing morbidity.JIA is a condition whose development 
is thought to be influenced by various factors, such as 
genetic and environmental factors, as well as infections 
and it is believed that these factors can trigger inflam-
matory responses and lead to the onset of autoimmune 
disorders [5–7]. Nonetheless, the influence of serum 
metabolites on disease pathogenesis is unclear [8]. There-
fore, the early identification of changes in serum metabo-
lites can help prevent JIA.

Metabolomics has emerged as a burgeoning field that 
focuses on the detection, analysis, and measurement 
of naturally occurring small-molecule metabolites in 
biological samples and this field holds the potential to 
enhance diagnoses by identifying biomarkers and path-
way components, as well as analyzing changes in serum 
metabolite levels [9–11]. JIA is associated with changes 
in serum metabolites. Currently, only a limited number 
of molecular, immune, and clinical markers with JIA have 
been suggested in these studies [12, 13]. For instance, 
calprotectin (also known as MRP8/14 and S100A8/A9) 
is useful for diagnosing JIA [14]. In turn, circulating lev-
els of 25-(OH)D appear to have no detectable effect on 
the incidence of JIA [15]. In particular, the occurrence 
of JIA is linked to the activation of endothelial cells, the 
activation of macrophages, heightened levels of pro-
inflammatory cytokines (such as IL-6, IL-10, and IFN-γ), 
and increased levels of adipokines [16]. These findings 

highlight the close connection between lipid profiles, 
inflammatory responses, and the pathogenesis and pro-
gression of autoimmune diseases [17]. High-mobility 
group box 1 and matrix metalloproteinase 3 are markers 
of JIA [18]. Population-based observational studies have 
identified various metabolites associated with JIA but are 
influenced by potential confounding factors or limited by 
sample size. Therefore, large studies are needed to iden-
tify and characterize serum biomarkers that are clinically 
useful for the early diagnosis of JIA.

The Mendelian randomization method utilizes genetic 
variants, particularly single nucleotide polymorphisms 
(SNPs), that are strongly linked to exposure factors, serv-
ing as instrumental variables (IVs) and these instrumen-
tal variables are then used to estimate the causal effects of 
exposure factors on health outcomes [19]. Moreover, MR 
eliminates potential confounders and reverses causation 
effects, making it somewhat similar to randomized con-
trolled trials and capable of evaluating genetic correla-
tions across complex diseases [20]. MR studies based on 
genome-wide association study (GWAS) datasets utilize 
genetic variation data as IVs to estimate causal effects. 
This MR study inferred the causal relationships of 486 
serum metabolites (exposure factors) with JIA (outcome), 
thus providing a basis for identifying JIA biomarkers and 
metabolic pathways.

Materials and methods
Experimental design
MR analysis was performed using publicly available 
GWAS catalog and FinnGen datasets to investigate the 
causal relationship of 486 serum metabolites (exposure 
factors) with JIA (outcome). Three fundamental assump-
tions were met to ensure the reliability of inferences [21, 
22]: (1) IVs were strongly correlated with serum metab-
olites; (2) IVs were not affected by confounders of JIA, 
such as body mass index (BMI), body fat percentage, 
body weight, smoking, and inflammatory bowel disease; 
(3) there was no genetic pleiotropy, i.e., the effects of IVs 
on JIA were mediated solely by the exposure. Therefore, 
it is currently impossible to completely exclude SNPs 
related to outcomes. The extent of bias can be assessed by 
evaluating the magnitude of horizontal pleiotropy. Addi-
tionally, considering the possibility of non-reproducibil-
ity of GWAS results [23], two sets of JIA genetic variation 
data were used in reproducibility analysis. Combining the 

Furthermore, seven metabolic pathways, including α-linolenic acid metabolism and pantothenate and CoA 
biosynthesis, are potentially associated with the onset and progression of JIA.

Conclusion  Five serum metabolites, including kynurenine and 3-dehydrocarnitine, may be causally associated with 
JIA. These results provide a theoretical framework for developing effective JIA prevention and screening strategies.
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results of two MR studies increases confidence in causal 
estimates (Fig. 1).

Source of GWAS data on JIA
Data on JIA were obtained from the FinnGen consor-
tium release 9 [24], which includes 286,529 participants 
of European descent (1,494 JIA patients and 285,035 
healthy controls). The phenotype of interest is JIA. The 
genetic variation data for JIA used in the replication 
analysis were sourced from the GWAS catalog dataset 
[25] containing 12,501 participants of European ancestry 
(3,305 JIA patients and 9,196 healthy controls) (Acces-
sion Code GCST90010715). The JIA diagnostic criteria 
used in this study adhere to the International Classifica-
tion of Diseases, 10th Edition (ICD-10) (https://icd.who.
int/browse10/2016/en#). Ethical approval and informed 
consent were waived because this study was based on 
previously published articles and open-source databases.

We used genome-wide association summary datasets 
containing 486 human serum metabolites [26], Among 
these metabolites, 177 had undisclosed biochemical 
characteristics, while 309 were categorized into eight dis-
tinct biochemical groups, namely amino acids, peptides, 
energy, cofactors and vitamins, lipids, xenobiotics, car-
bohydrates, and nucleotides. Ultimately, the GWAS data-
set consisted of roughly 2.1 million SNPs, collected from 
the KORA and TwinsUK datasets, which encompassed a 
total of 7,824 adult subjects.

Identifying appropriate IVs for screening
To ensure the validity and reliability of the results, we 
met three key assumptions that served as the basis for 
selecting IVs. We established a threshold of p < 1 × 10− 5 
for selecting SNPs significantly associated with the expo-
sure. The strength of SNPs was evaluated by calculating 
the F statistic and in order to avoid any potential bias 
resulting from weak instruments, SNPs with an F statistic 
value below 10 were excluded from the analysis [27, 28]. 
F was calculated using the following equations:

	
R2 =

2× (1− MAF)× MAF × β

SD

The minor allele frequency (MAF), effect size (β), and 
standard error (SD) of β play important roles in the 
analysis.

	
F =

R2 × (N − 1−K)

(1− R2)×K

The exposure GWAS study’s sample size, denoted by 
N, the number of IVs, denoted by K, and the degree to 
which the IVs explain the exposure (as measured by R², 
the coefficient of determination in the regression equa-
tion) are considered for analysis.

Fig. 1  Flowchart of the study design

 

https://icd.who.int/browse10/2016/en#
https://icd.who.int/browse10/2016/en#
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MR analysis
Genetic variant data were sourced from the FinnGen 
dataset. Given the advantages of the inverse variance 
weighted (IVW) method in testing efficiency and sta-
tistical power, we selected it as the primary method for 
establishing causal relationships. Other methods were 
employed, including simple mode, MR-Egger, weighted 
median, and weighted model. The IVW method calcu-
lates the Wald ratio for each IV using inverse variance 
weights and combines the results through meta-analysis. 
The weight of each IV was determined by the inverse of 
its effect variance, i.e., larger studies with smaller stan-
dard errors have more weight than smaller studies. This 
weight allocation approach reduces inaccuracies in esti-
mating combined effects. The slope corresponds to the 
causal impact of the exposure factor on the outcome. The 
variance of the effect can be estimated using a fixed or 
random effects model.

The desired objective of establishing a reliable asso-
ciation between exposure and outcome can be accom-
plished by utilizing different SNPs and assuming that 
each genetic variant satisfies the instrumental variable 
assumptions, thus enabling the combination of Wald 
ratio estimates [29]. Nevertheless, the implementation 
of the IVW approach may introduce estimation bias 
in assessing causal effects if the instrumental variables 
exhibit pleiotropy and the estimation of causal effects 
is represented by the slope of MR-Egger regression, 
while the intercept corresponds to the average pleiotro-
pic effect of a genetic variant [30]. Through the utiliza-
tion of weighted models, causal effect estimations can be 
obtained by giving weights to each SNP, with the largest 
weight being considered [31].

Sensitivity analysis
In MR studies, the accuracy of causal estimates is 
increased using IVs. However, this approach may also 
introduce IVs with pleiotropy and heterogeneity, result-
ing in bias. Various techniques are employed to enhance 
the dependability of results, which encompass the appli-
cation of the MR-Egger procedure [32], adoption of the 
Cochran Q test [33], and implementation of the leave-
one-out strategy [34]. The MR-Egger intercept test eval-
uates the impact of pleiotropy on the causal effect of 
interest; a nonzero intercept is evidence of pleiotropy. 
The Cochran Q test assesses heterogeneity among IVs.
The approach of leaving one out investigates the impact 
of each IV and examines the robustness of the results by 
consecutively excluding each IV and determining the col-
lective effect of the remaining IVs.

Analysis of metabolic pathways
Metabolic pathways associated with JIA were identified 
using the KEGG database (https://new.metaboanalyst.

ca/MetaboAnalyst/). Differentially expressed metabolites 
were selected based on a significance level of p < 0.05. 
This analysis was performed using MetaboAnalyst ver-
sion 5.0. The metabolic pathways that showed a signifi-
cance level of p < 0.1 are listed in Supplementary Table 2.

Exclusion of confounding factors
In spite of the exclusion of inadequate independent vari-
ables (F < 10) and the execution of sensitivity analyses to 
evaluate the dependability of Mendelian randomization 
(MR) findings, certain independent variables can breach 
assumptions (2) and (3).IVs associated with potential 
confounders of JIA, including BMI, body fat percentage, 
body weight, smoking, and inflammatory bowel disease, 
were identified using PhenoScanner version 2 (http://
www.phenoscanner.medschl.cam.ac.uk/).

Replication analysis and meta-analysis
To increase the reliability of MR estimates, we performed 
a replication analysis using a second set of JIA genetic 
variation data obtained from the GWAS dataset. Then, 
we merged the findings of two MR studies to identify 
metabolites causally associated with JIA.

Linkage disequilibrium score regression (LDSC) and 
reverse causality analysis
Once the cause-and-effect relationship between the 
exposure and outcome is established, LDSC becomes 
a valuable tool for examining the genetic association 
among intricate characteristics.This type of regression 
helps avoid overestimations and confounding from poly-
genicity. LDSC involves measuring the linkage disequi-
librium (LD) score for each SNP to evaluate its degree of 
association with complex traits. This score quantifies the 
strength of LD between a SNP and neighboring SNPs. 
Further, LD analysis reduces the potential confounding 
effects of shared genetic factors on MR results [35].

To prevent endogeneity resulting from reverse causa-
tion and improve the reliability of MR findings, we per-
formed a reverse causation analysis on the identified 
group of metabolites.

Results
Following the screening process, a total of 8,845 SNPs 
directly related to 486 metabolites were identified. The 
range of SNPs associated with each metabolite varied 
from a minimum of 3 to a maximum of 413. Moreover, 
it is noteworthy that all of these SNPs exhibited F values 
exceeding the threshold of 10, thereby confirming their 
potential as reliable instruments for MR investigations 
(Supplementary Tables 1 and 2).

https://new.metaboanalyst.ca/MetaboAnalyst/
https://new.metaboanalyst.ca/MetaboAnalyst/
http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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MR analysis
The MR findings are presented in (Supplementary Table 
3). The IVW results indicated that JIA was causally 
related to 24 serum metabolites. It emphasize the pres-
ence of unknown metabolites with unknown properties. 
Additionally, It highlights the classification of 18 metab-
olites into eight distinct categories. These categories 
include amino acids, peptides, energy, cofactors and vita-
mins, lipids, xenobiotics, carbohydrates, and nucleotides. 
The study found several notable findings regarding spe-
cific metabolites. Firstly, the metabolite kynurenine (Kyn) 
demonstrated a strong association with the studied con-
dition (odds ratio [OR]: 16.39, 95% confidence interval 
[CI]: 2.07-129.63, p = 5.11 × 10 − 6). On the other hand, the 
metabolites 3-dehydrocarnitine (OR:0.32, 95%CI: 0.14–
0.72, p = 0.0068), levulinate (4-oxovalerate) (OR: 0.40, 
95%CI: 0.20–0.80, p = 0.0098), X-14,208 (phenylalanyl-
serine) (OR: 0.68, 95%CI: 0.51–0.92, p = 0.010), and lino-
lenate (OR: 16.48, 95% CI: 1.32-206.22, p = 0.030) were 
found to have significant associations as well. These find-
ings suggest the potential involvement of these metabo-
lites in the studied condition.

There was evidence of heterogeneity in Kyn, acetylcar-
nitine, and cholate; thus, their causal relationship with 
JIA was assessed using the IVW random effects model. 
IVs related to acetylcarnitine showed horizontal plei-
otropy, while IVs related to other metabolites did not 
exhibit heterogeneity or horizontal pleiotropy (Supple-
mentary Table 4) (Supplementary file 1).

Confounding analysis, replicate analysis, and meta-analysis
Although 17 metabolites (excluding acetylcarnitine 
because of horizontal pleiotropy) passed tests for hetero-
geneity and horizontal pleiotropy, we further investigated 
the associations of IVs with other phenotypes. Based on 
the PhenoScanner results, we found that SNPs related 
to stearoylcarnitine, linolenate, 3-carboxy-4-methyl-
5-propyl-2-furanpropanoate (CMPF), ursodeoxycho-
late, levulinate, and X-14,208 (phenylalanylserine) were 
not associated with confounders of JIA. However, SNPs 
related to Kyn, 3-dehydrocarnitine, cysteine, pantothe-
nate, phenylalanine, N-acetylglycine, tryptophan betaine, 
and cholate were associated with confounding factors 
such as BMI, body fat percentage, body weight, smoking, 
and inflammatory bowel disease (Supplementary Table 
5).

After excluding SNPs associated with these confound-
ing factors, we discovered that Kyn, 3-dehydrocarnitine, 
cysteine, and pantothenate were causally related to JIA, 
while phenylalanine, N-acetylglycine, tryptophan beta-
ine, and cholate were not causally associated with JIA. 
To validate the MR analysis, we obtained independent 
JIA genetic data from the FinnGen dataset for replica-
tion analysis, which revealed that five metabolites had 

characteristics consistent with the MR analysis (Fig.  2) 
(Supplementary Tables 6, 7 and 8). Then, a meta-anal-
ysis was conducted to combine the results of two stud-
ies, confirming that Kyn, 3-dehydrocarnitine, levulinate, 
X-14,208 (phenylalanylserine), and linolenate were caus-
ally associated with JIA (Fig.  3). CMPF and ursodeoxy-
cholate were excluded because of inconsistent directions 
in the two meta-analyses.

Metabolic pathway analysis
JIA was found to have significant associations with 
seven metabolic pathways. These include the biosynthe-
sis of pantothenate and Coenzyme A (CoA) (p = 0.002, 
KEGG), the biosynthesis of aminoacyl-tRNA (p = 0.013, 
KEGG), the biosynthesis of phenylalanine, tyrosine, and 
tryptophan (Trp) (p = 0.015, KEGG), the metabolism of 
thiamine (p = 0.027, KEGG), the metabolism of taurine 
and hypotaurine (p = 0.030, KEGG), the metabolism of 
phenylalanine (p = 0.038, KEGG), and the metabolism of 
α-linolenic acid (p = 0.049, KEGG).

LDSC and reverse causality analyses
Based on LDSC analysis, there was no notable genetic 
correlation observed between JIA and Kyn (rg: 0.148, 
SE: 0.118, p = 0.210), levulinate (rg: 0.041, SE: 0.092, 
p = 0.654), and 3-dehydrocarnitine (rg: 0.041, SE: 0.092, 
p = 0.654). These findings indicate that the MR outcomes 
were not impacted by common genetic elements.

The reverse causality analysis revealed no significant 
genetic evidence supporting a cause-and-effect relation-
ship between JIA and Kyn, 3-dehydrocarnitine, levu-
linate, X-14,208 (phenylalanylserine), and linolenate 
(Supplementary Table 9). This analysis helps mitigate 
the potential influence of environmental endogeneity on 
these factors.

Discussion
To investigate the causality between JIA and 486 serum 
metabolites in humans, this research utilized FinnGen 
datasets and the GWAS catalog through a two-sample 
MR approach.The findings suggest that elevated levels 
of Kyn and linolenate increase the risk of JIA, whereas 
increased levels of 3-dehydrocarnitine, levulinate, and 
X-14,208 (phenylalanylserine) protect against this con-
dition. Furthermore, the LDSC analysis indicated no 
genetic correlation of these metabolites with JIA, demon-
strating that the MR analysis was reliable and unaffected 
by pleiotropy. Moreover, seven metabolic pathways were 
significantly associated with JIA, including pantothenate 
and CoA biosynthesis and α-linolenic acid metabolism. 
JIA is a condition resulting from a combination of genetic 
and environmental factors that subsequently induces sys-
temic immune reactions, which means timely and pre-
cise identification and intervention play a crucial role in 
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Fig. 2  Meta-analysis of the causal associations of serum metabolites with juvenile idiopathic arthritis. OR, odds ratio; CI, confidence interval
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enhancing patient outcome [4]. In the United States, JIA 
affects about one in a thousand children, being the most 
prevalent pediatric rheumatic disease and a leading cause 
of disability acquired in childhood [36, 37]. This MR 
research has deepened our understanding of the mech-
anisms behind JIA, playing a significant role in the dis-
ease’s prevention and treatment.

The causal relationship between Kyn and JIA remains 
unclear.However, previous research has shown that kyn is 
a significant byproduct of Trp catabolism through tryp-
tophan 2,3-dioxygenase (TDO) or indoleamine 2,3-diox-
ygenase (IDO) [38]. The ultimate metabolic product 
of Kyn is NAD+, which plays a crucial role in immune 
regulation [39]. Additionally, under certain physiological 
conditions, Kyn can be converted into kynurenic acid and 
xanthurenic acid, both of which are involved in inflam-
mation and immunity in mammals [40, 41]. The three 
rate-limiting enzymes of the Trp-Kyn pathway are IDO1, 
IDO2, and TDO2, with IDO1 promoting inflammation 
in rheumatoid arthritis (RA) [42]. Because of its high 
homology with IDO1, IDO2 may also be implicated in 
the onset and progression of autoimmune arthritis [43]. 
Moreover, a significant increase in serum Kyn levels is 
associated with chronic low-grade inflammation [44].JIA 

is a multifactorial disease with heterogeneous manifesta-
tions, including many forms of chronic arthritis [2]. The 
levels of Trp-Kyn pathway metabolites are elevated in 
the serum, urine, and synovial fluid of RA patients [45]. 
Moreover, RA is correlated with increased Trp catabo-
lism, increased Kyn concentrations, and immune cell 
activation in patients and animal models [46]. These data 
suggest that the Trp-Kyn metabolic pathway is involved 
in the pathogenesis of RA. Moreover, there is increased 
evidence of the role of Kyn metabolites in physiological 
and disease states. Therefore, increased Kyn levels may 
be implicated in the pathophysiology of JIA, as demon-
strated in this study.

Although the causal relationship between linolenate 
and JIA is unclear, the findings suggest that linolenate 
increases the risk of JIA via alpha-linolenic acid metabo-
lism. Research demonstrates that Wuwei Shexiang pill 
treatment has been linked to a reduction in γ-linolenic 
acid and other components of the linoleic acid meta-
bolic pathway, suggesting its anti-inflammatory proper-
ties by inhibiting linoleic acid metabolism and affecting 
arachidonic acid metabolism [47]. Alpha-linolenic acid 
has multiple biological functions and is involved in endo-
plasmic reticulum (ER) stress and lipid metabolism. 

Fig. 3  Scatter plot of five metabolites( Kyn, 3-dehydrocarnitine, levulinate, X−14,208 (phenylalanylserine), and linolenate )
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Linolenate induces ER stress by inhibiting the expression 
of fatty acid synthase, thereby affecting fatty acid syn-
thesis and inflammatory immune responses [48]. Some 
drugs can influence the production of inflammatory 
mediators, including PGE2 and leukotrienes, by regulat-
ing alpha-linolenic acid and arachidonic acid metabolism 
[49, 50]. These data and our findings suggest that lino-
lenate is implicated in the development and progression 
of JIA.

We found that three serum metabolites—3-dehydro-
carnitine, levulinate, and X-14,208 (phenylalanylserine)—
protected against JIA. Nonetheless, little is known about 
the causal relationship of these metabolites with JIA. 
Specifically, 3-dehydrocarnitine affects fatty acid metab-
olism in gout arthritis [51]. Levulinate has a genetic 
causal relationship with RA [52]. Additionally, 5-ami-
nolevulinic acid (5-ALA) has anti-inflammatory and 
immunomodulatory properties and 5-ALA combined 
with sodium ferrous citrate (SFC) increases the expres-
sion and release of heme oxygenase 1 (HO-1) and its 
metabolites in macrophages and has been utilized in the 
treatment of inflammatory diseases [53–55]. These data 
suggest that the interaction between levulinate and JIA 
may be mediated by the upregulation of HO-1 by 5-ALA/
SFC in macrophages. However, this hypothesis needs to 
be validated by experimental research. We found that the 
increased expression of X-14,208 (phenylalanylserine) 
was associated with a reduced risk of JIA. A study indi-
cates that serum levels of threonine, phenylalanine, and 
leucine exhibit a positive correlation with the expression 
of synovial IL-1β and IL-8 in RA patients [56]. Wine-
processed Curculigo orchioides (pCO)’s potential anti-
inflammatory actions might be due to its modulation of 
the phenylalanine metabolic pathway [57]. Additionally, 
another study aimed at correlating serum metabolic pro-
files of RA patients undergoing methotrexate treatment 
with synovial gene expression discovered associations 
between serine/glycine/phenylalanine metabolism and 
aminoacyl-tRNA biosynthesis with TNF-α/CD3E and B 
cell/plasma related signatures, suggesting a role in lym-
phocyte regulation within the RA synovium [58].

Metabolomics, an advanced technology, provides a 
comprehensive means to explore variations in metabolite 
levels within biological frameworks, offering invaluable 
insights into the disruption of metabolic pathways across 
various diseases [59]. For instances, a study highlights 
the pivotal role of metabolomics in revealing that exclu-
sive enteral nutrition can effectively trigger remission in 
JIA by significantly altering the microbiome and metab-
olome [60]. This approach has pinpointed seven critical 
metabolic pathways associated with JIA, encompassing 
the biosynthesis of pantothenate and CoA, aminoacyl-
tRNA, phenylalanine, tyrosine, and tryptophan, as well 
as the metabolism of thiamine, taurine and hypotaurine, 

phenylalanine, and α-linolenic acid. These pathways play 
essential roles in cellular energy metabolism and the acti-
vation of inflammatory cells, highlighting their impor-
tance in the pathogenesis of diseases. Employing Ultra 
Performance Liquid Chromatography-Tandem Mass 
Spectrometry technology, research has shown that Mun-
ziq Balgam, a herbal medicine, can modulate collagen-
induced arthritis (CIA) in rat models by affecting these 
specific pathways, including linoleic acid, alpha-linolenic 
acid, and the biosynthesis of pantothenate and CoA [61]. 
Additionally, Wuwei Shexiang pills have been observed 
to indirectly affect mitochondrial function and the tricar-
boxylic acid cycle by altering the synthesis of pantothenic 
acid and CoA, influencing phenylalanine metabolism 
[47]. Further investigations into blood metabolomics of 
RA rats revealed the impact of Phellodendri Amurensis 
Cortex, berberine, and palmatine on aminoacyl-tRNA 
biosynthesis, phenylalanine metabolism, tryptophan 
metabolism, and the biosynthesis of pantothenic acid 
and coenzyme A, showcasing anti-RA effect [62]. Thia-
mine enhances neurotransmission, muscle function, and 
immune response in CIA by adjusting metabolism to 
meet increased energy needs and reduce cellular stress, 
highlighting the importance of thiamine and arachidonic 
acid levels in CIA treatment [63]. Furthermore, research 
indicates that pCO treatment targeting taurine metabo-
lism can mitigate RA inflammation and bone degradation 
by modulating anti-inflammatory responses and protect-
ing against oxidative stress [57]. These studies indicate 
that targeted regulation of specific metabolic pathways 
provides a meaningful pathway for the treatment and 
comprehension of JIA.

This study has strengths. First, IVs and exposure factors 
were strongly correlated (F > 10). Second, we obtained 
JIA genetic variation data from multiple sources, con-
ducted several MR analyses, and combined the results 
of two MR studies to enhance the confidence of MR 
estimates. Third, MR can eliminate confounding factors 
and is unaffected by reverse causality. Fourth, the results 
of MR studies are more robust than those of traditional 
observational studies. Fifth, we addressed the problem 
of endogeneity due to reverse causation. To address mul-
tiple comparisons, we implemented the Bonferroni cor-
rection. The significance level was adjusted to p < 0.00024 
(0.05/486) for the analysis.

This study also has limitations. First, factors such as the 
Beavis effect, compensatory mechanisms (e.g., canaliza-
tion), low statistical power, and genetic complexity can 
limit the application of MR studies [35]. Second, causal 
inferences were drawn from the results of MR stud-
ies and should be further validated through molecular 
experiment and real-world clinical studies. Third, the 
SNP data were obtained from European populations, lim-
iting the generalizability of the findings. Fourth, data on 
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age, gender, and other demographic characteristics were 
unavailable. Fifth, there was heterogeneity in the MR 
analysis of serum metabolites and JIA. Although hetero-
geneity was reduced to acceptable levels after removing 
outliers, the results should be interpreted with caution.

Conclusion
This study utilized GWAS datasets and MR to assess 
the causal relationships of circulating metabolites with 
JIA and found that several metabolites, including Kyn, 
linolenate, and 3-dehydrocarnitine, were genetically 
associated with JIA. Thus, the study provides theoreti-
cal support for the development of early screening and 
prevention strategies for JIA and has significant clinical 
implications.
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