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Abstract 

Objectives Systemic lupus erythematosus is an autoimmune disease that involves multiple organ systems. One of its 
major complications, lupus nephritis (LN), is associated with a high mortality rate, and children‑onset LN have a more 
severe course and worse prognosis than adults. Oxidative stress and inflammatory responses are involved in LN devel‑
opment and pathogenesis. Thus, this study aimed to explore the role of signaling regulation of the Nrf2/HMGB1/TLR/
NF‑κB pathway in LN pathogenesis and unravel the expression of  TLR4+CXCR4+ plasma cells subset (PCs) in LN.

Methods C57BL/6 and MRL/lpr mice were divided into four groups: control, model, vector control, and Nrf2 
overexpression groups. The vector control and Nrf2 overexpression groups were injected with adenoviral vectors 
into the kidney in situ. Pathological changes in kidney tissues were observed by hematoxylin–eosin staining. The 
expression of Nrf2, HMGB1, TLR4, NF‑κB, and downstream inflammatory factors in kidney samples was analyzed 
by quantitative polymerase chain reaction, western blotting, and enzyme‑linked immunosorbent assay. The ratios 
of  TLR4+CXCR4+ PC subsets in the blood and kidneys of mice were determined by flow cytometry.

Results In MRL/lpr mice, Nrf2 was downregulated while HMGB1/TLR4/NF‑κB pathway proteins were upregulated. 
Nrf2 overexpression decreased the expression of HMGB1, TLR4, NF‑κB, and its downstream inflammatory cytokines (IL‑
1β and TNFα). These cytokines were negatively correlated with an increase in Nrf2 content. PC and TLR4 + CXCR4 + PCs 
in the blood and kidney samples were significantly increased in MRL/lpr mice; however, they were decreased 
upon Nrf2 overexpression.

Conclusion This study showed severe kidney injury in an LN mouse model and an increased ratio 
of  TLR4 + CXCR4 + PCs. Furthermore, we observed that Nrf2 regulates LN immune response through the Nrf2/HMGB1/
TLR4/NF‑κB pathway, which can be considered an important target for LN treatment. The clinical value of the findings 
of our study requires further investigation.
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Introduction
Systemic lupus erythematosus (SLE) is an autoimmune 
disease involving multiple systems, characterised by the 
production of autoimmune antibodies and the deposi-
tion of immune complexes that cause damage to a num-
ber of organs [1–3]. The prevalence of SLE worldwide 
is about 43.7 (15.87 to 108.92) per 100,000 persons, 
with large variations by sex, age group and geographical 
region [4]. Approximately 15–20% of SLE patients begin 
in childhood, with a more severe course and worse prog-
nosis than adult SLE. LN occurs in up to 80 per cent of 
childhood-onset SLE (cSLE), contributing to the high 
mortality rate [5, 6]. At present, most of the treatment of 
childhood-onset LN (cLN) is inferred from adults, so it is 
particularly important to delve into the pathogenesis of 
LN and discover potential therapeutic targets. There are 
many similarities in the pathophysiological mechanisms 
of adult and cSLE, and it is generally accepted that the 
pathogenesis is due to the deposition of immune com-
plexes formed by apoptotic cell-derived chromatin and 
anti-nuclear antibodies in the kidney, inducing cytokine 
secretion imbalance and lymphocyte dysfunction and 
resulting in an improper immune response[7–9]. Fur-
thermore, in patients with SLE, macrophages show a 
decreased ability to clear apoptotic fragments, resulting 
in prolonged exposure of the immune system to self-anti-
gens [10, 11]. Nuclear factor erythroid-derived 2-related 
factor 2 (Nrf2) is key to defense against oxidative stress 
[12, 13]. Nrf2 has a wide range of regulatory actions; 
however, it acts mainly through the Kelch-like ECH-asso-
ciated protein (Keap1)-dependent pathway in which its 
transfer to the nucleus occurs, activating the downstream 
antioxidant response element (ARE) and exerting its anti-
oxidant effect [3, 14].

High mobility group protein box1 (HMGB1) is a 
typical damage-associated molecular pattern (DAMP) 
molecule associated with various disease phenotypes, 
including SLE [15]. As the main substance produced by 
apoptosis, HMGB1 can bind self-antigen components 
such as nucleosomes. Subsequently, through receptors 
for advanced glycation end products (RAGE), toll-like 
receptor 2 (TLR2), and toll-like receptor 4 (TLR4), 
the release of inflammatory factors [such as interferon 
(INF) and nuclear factor kappa B (NF-κB)] is promoted, 
along with autoantibody production of mainly anti-
nuclear antibodies through immune system activation 
[15]. The inflammation-mediated role of the HMGB1/
TLR4/NF-κB signaling pathway in diseases such as 
asthma, rheumatoid arthritis, lung injury, sepsis, and 

SLE and its associated complications (such as LN) has 
received widespread attention. Furthermore, therapies 
targeting this signaling pathway have achieved prelimi-
nary success [16–21].

Toll-like receptors (TLRs) are type I transmembrane 
proteins and pattern recognition receptors that recog-
nize various pathogen-associated molecular patterns 
and DAMPs [22]. After TLR4 recognition by extracel-
lular HMGB1, AP-1 and IRF3/5/7 are upregulated and 
promote the transfer of NF-κB to regulate the expres-
sion of genes encoding inflammatory cytokines through 
the TLR4 adapter MyD88 and TRIF [23–25].TLR4 is 
involved in autoimmunity and LN, as well as NF-κB 
activity is essential for immune cell activation [26–28]. 
Compared with C57BL/6(lpr/lpr) mice, TLR2- and 
TLR4-deficient mice show lower anti-nuclear and anti-
phospholipid autoantibody levels, less kidney damage, 
and milder disease [29].

In abnormal autoimmune tolerance, autoreactive 
B cells (i.e., pathogenic plasma cells) produce large 
amounts of mainly anti-nuclear and anti-DNA autoan-
tibodies [30]. Plasma cells (PC) differentiate from the 
germinal centers of peripheral lymph nodes to become 
memory B cells or long-lived PCs [30]. Long-lived 
PCs determine the permanent production of autoanti-
bodies. Several studies have explored the role of TLR 
signaling in B cells in LN. TLR7 is deleterious during 
SLE development, whereas TLR9 confers protection. 
TLR7-deficient lupus mice show autoimmune inflam-
mation remission, whereas TLR9-deficient lupus mice 
show a more severe autoimmune inflammation [31, 32]. 
Intrinsic TLR4 signal transduction in B cells plays an 
important role in autoimmune diseases, which differs 
from the role in the HMGB1/TLR4/NF-κB inflamma-
tory signaling pathway. C57BL/6 (lpr/lpr)-TLR4 defi-
cient mice have a reduced number of marginal-zone-B 
cells caused by decreased expression of B lymphocyte 
stimulator receptors, which affects B cell maturation 
[29]. TLR4 may also enhance autoantibody produc-
tion through the increased expression of Th1- and 
Th17-related cytokines [28]. Chemokines, particularly 
CXCR4 and CXCL12, are strongly associated with 
B-cell infiltration in the kidneys of lupus-prone MRL/
lpr mice [33].  TLR4+CXCR4+ PCs are long-lived PCs 
that are positively correlated with anti-dsDNA levels 
in the serum and kidneys, leading to autoantibody pro-
duction and LN development [34]. However, there are 
few studies on B cell TLR4 signaling in autoimmunity. 
The correlation between  TLR4+CXCR4+ PCs, as one 
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of the characteristics of autoreactive B cell subsets, and 
LN development requires further exploration.

Materials and methods
Animal models
Six C57BL/6 mice (female, 60–80  g, specific-pathogen-
free (SPF) grade, 11 weeks old) and 18 lupus erythemato-
sus MRL/lpr mice (female, 61–82 g, SPF grade, 11 weeks 
old) were purchased from Huachuang sino Pharmaceuti-
cal Technology Co., LTD. (Taizhou, Jiangsu, China).

Experimental design
This study was approved by the Experimental Animal 
Welfare and Ethics Committee of ZVAST BIO Co., LTD. 
(No.2021100701). All six C57BL/6 mice and the 18 MRL/
lpr mice were randomly divided into each group. The 
experiment was carried out in two parts:

1) Experimental protocol A: for HE staining and flow 
cytometry. It was divided into the following four 
groups: control group, MRL/lpr group (hereafter 
referred to as the model group), MRL/lpr mice with 
Nrf2 gene adenovirus overexpression interference 
empty-load group (hereafter referred to as the Nrf2 
empty-load group), and MRL/lpr mice with Nrf2 
gene adenovirus overexpression interference vec-
tor group (hereafter referred to as the Nrf2 vector 
group). Three mice were randomly assigned to each 
group(n = 3), with C57BL/6 mice in the control group 
and MRL/lpr mice in another three groups.

2) Experimental protocol B: for genetic testing in mice, 
including qPCR, Western Blotting, ELISA detection. 
It was also divided into four groups: control group, 
model group, Nrf2 empty-load group, Nrf2 vector 
group. Three mice were randomly assigned to each 
group (n = 3), with C57BL/6 mice in the control 
group and MRL/lpr mice in another three groups.

All animals entered the experiment after 1  week of 
adaptive feeding. Throughout the experiment, animals 
were fed a standard diet and had ad libitum access to food 
and water. Animals were maintained in a clean room at 
a temperature of 20–26 °C and humidity of 40–70%. The 
levels of circulating immune complexes in MRL/lpr mice 
increased significantly at approximately 12  weeks after 
birth. Therefore, 12-week-old mice were chosen as the 
starting point for this study. The experiments lasted for 
four weeks, starting at the beginning of the  12th week of 
age and ending by the  16th.

Adenoviral plasmids containing the Nrf2 gene 
(pAdEasy-EF1-MCS-CMV-EGFP-Nrf2, the same 
sequence as NM_010902.4) and an empty vector plasmid 
(pAdEasy-EF1-MCS-CMV-EGFP) were purchased from 

Hanbio BIO Co., Ltd. (Shanghai, China). Mice in the 
Nrf2 empty-load and Nrf2 vector groups were anesthe-
tized, the abdominal skin was pre-prepared, and the renal 
pelvis was bilaterally exposed. Each mouse was injected 
bilaterally into the renal pelvis with 50 μl of virus, and the 
skin was subsequently sutured. Overexpression of Nrf2 
was verified by immunofluorescence before proceeding 
with additional experiments.

On the one week after orthotopic virus injection, the 
kidneys of mice in each group were collected, embedded 
in paraffin, sectioned, and stained for renal histology by 
hematoxylin–eosin (HE) staining. Enzyme-linked immu-
nosorbent assay (ELISA) was performed in mouse serum 
to detect the levels of IL-1β, TNF-α, and NF-κB. Quanti-
tative polymerase chain reaction (qPCR) was performed 
to detect Nrf2 (Nfe2l2, NM_010902.4), HMGB1 (NM_ 
010439.4), and TLR4 (NM_021297.3) expression in kid-
ney tissues. Western blotting (WB) was conducted to 
evaluate Nrf2, HMGB1, and TLR4 protein levels in kid-
ney tissues. Flow cytometry was employed to detect the 
 TLR4+CXCR4+ PC ratio in the blood and kidney.

HE staining
The mouse kidney tissue samples were dehydrated, 
soaked, embedded in wax, and sectioned using a 
microtome. Samples were then stained with hematoxylin 
and eosin (HE) according to the manufacturer’s guide-
lines, dehydrated recursively with a series of ethanol dilu-
tions, and sealed with xylene. Images were acquired using 
a microscope.

Flow cytometry
A single-cell suspension of approximately  107 cells/ml 
was prepared, and 100 μl was added to a flow tube. Five 
µL of each reagent (CD38 FITC, CD138 PE, CD27 APC)/
(CXCR4 APC, TLR4 PE) were added to the cell suspen-
sion, incubated in the dark for 30 min, and centrifuged at 
400 × g for 5 min at room temperature. The supernatant 
was discarded, 2 mL of PBS was added, and the sample 
was centrifuged again at 400 × g for 5 min at room tem-
perature, with a subsequent repetition of these processes. 
After centrifugation, 500 µL of PBS and a flow cytome-
ter probe (NovoCyte 2060R, ACEA BIO Co., Hangzhou, 
China) were added for detection. CD38 FITC, CD138 PE, 
CD27 APC, CXCR4 APC, and TLR4 PE were purchased 
from BioLegend (San Diego, CA, USA).

ELISA detection
Blood samples were collected and centrifuged for 
serum retrieval. All samples and reagents from the 
IL-1β (MM-0040M1, MEIMIAN, Jiangsu, China), 
TNF-α (MM-0132M1, MEIMIAN, Jiangsu, China), and 
NF-κB kits (ML063331-2, MEILIAN, Shanghai, China) 
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were equilibrated at room temperature for 120  min 
before starting the protocol. The ELISAs were con-
ducted according to the manufacturer’s instructions. 
Briefly, 100 μL of horseradish peroxidase (HRP)-labeled 
detection antibody were added to the samples in the 
well and incubated for 60  min in a closed thermostat. 
After plate washing five times, 50 μL each of substrate 
A and B were added to each well and incubated in the 
dark at 37  °C for 15 min. Then, 50 μL of stop solution 
were added to each well, and the optical density value 
was measured at a wavelength of 450 nm using a micro-
plate reader (WD-2012B, LIUYI BIO Co., Ltd., Beijing, 
China).

qPCR
Kidney tissue samples were processed using the TRIzol 
Reagent kit (CW0580S, CWBIO, Beijing, China), total 
RNA was extracted using an Ultrapure RNA Extrac-
tion Kit (CW0581M, CWBIO, Beijing, China), and 
RNA concentration and purity were determined using 
an ultraviolet spectrophotometer (NP80, Implen Nano-
Photometer, Munich, Germany). RNA was converted 
into cDNA using HiScript II Q RT SuperMix for qPCR 
(+ gDNA wiper) (R223-01, Vazyme, Nanjing, China) 
and used for fluorescent quantitative PCR, with the fol-
lowing reaction parameters: 10  μl of 2 × SYBR Green 
PCR Master Mix (Q711-02, Vazyme, Nanjing, China), 
1  μl of cDNA, 0.4  μl of forward primers, 0.4  μl of 
reverse primers, and 8.2  μl of RNase-free  ddH2O. The 
qPCR program consisted of 40 cycles of amplification. 
β-actin was used as the housekeeping gene, and the 
relative expression of Nrf2, HMGB1, TLR4, and NF-κB 
was calculated according to the  2−△△Ct method. 
(Primer sequences are shown in Table 1).

Western blotting
Mouse kidney samples were treated with radioimmuno-
precipitation assay (RIPA) buffer for protein extraction. 
Protein concentration was subsequently determined 
using a BCA kit. The samples were denatured for West-
ern blotting. Briefly, protein samples were loaded into 
the gel, and sodium dodecyl benzene sulfonate gel elec-
trophoresis was performed for 1–2 h. Proteins were then 
transferred to the PVDF membrane by the wet method, 
blocked for 1  h in a 3% TBS-T skim milk solution, and 
incubated overnight in the primary antibody solution at 
4  °C. The next day, the membranes were washed three 
times with standard TBS-T buffer, incubated for 2  h at 
room temperature in a secondary antibody solution, 
washed three times, and incubated with ECL prior to 
detection in an imaging system. Images were analyzed in 
the "ImageJ" software. The mouse anti-GAPDH antibody 
was purchased from TransGen Biotech Co., Ltd. (Beijing, 
China). HRP-conjugated Goat Anti-Mouse IgG (H + L) 
and HRP-conjugated Goat Anti-Rabbit IgG (H + L) were 
purchased from Servicebio Technology Co., Ltd. (Wuhan, 
China). Mouse Anti-Nrf2 was acquired from Proteintech 
Group Inc. (Chicago, IL, USA), and Rabbit Anti-HMGB1 
and Rabbit Anti-TLR4 antibodies were purchased from 
Affinity Biosciences Ltd. (Melbourne, Australia).

Statistical analysis
SPSS19.0 software was used for statistical analysis. Data 
are presented as mean ± standard deviation (SD). Com-
parisons between three or more groups were conducted 
using one-way analysis of variance, and then compari-
sons between the two groups were conducted using the 
LSD method. Graphpad 8.0 was used for graph design, 
and the inspection level was set at α = 0.05. Gray values 
were analyzed using Image Pro J software.

Table 1 Primers used for qPCR experiments

Primer name Primer sequence Primer length (nt) Product length (bp) Annealing 
temperature 
(℃)

Nrf2 F CTT TAG TCA GCG ACA GAA GGAC 22 227 47.8

Nrf2 R AGG CAT CTT GTT TGG GAA TGTG 22

HMGB1 F GGC GAG CAT CCT GGC TTA TC 20 86 60.1

HMGB1 R GGC TGC TTG TCA TCT GCT G 19

TLR4 F GAA GCT TGA ATC CCT GCA TAG AGG T 25 249 49.0

TLR4 R AGT TTG AGA GGT GGT GTA AGCC 22

NF‑κB F CAC GAG GCT CCT TTT CTC AA 20 270 58.3

NF‑κB R GGG GTT CAG TTG GTC CAT TG 20

β‑actin F AGG GAA ATC GTG CGT GAC 18 192 58.0

β‑actin R CAT ACC CAA GAA GGA AGG CT 20
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Results
Severe kidney damage in MRL/lpr mice
The fluorescence derived from viral infection was sig-
nificantly stronger in the Nrf2 vector group than in the 
Nrf2 load-empty and control groups, suggesting the suc-
cessful construction and transduction of the interfer-
ence vector (Fig. 1a-c). MRL/lpr mice showed glomerular 
inflammation and congestion, kidney structural disorder 
with several renal tubular epithelial cells exfoliated into 
the lumen, and an obvious infiltration of inflammatory 
cells. However, this effect was not observed in the con-
trol group. In the Nrf2 empty-load group, the tubular 
lumen was congested, the boundaries between cells were 
unclear, renal tubular epithelial cells were shed into the 
lumen, and there was obvious inflammatory infiltration 
similar to that observed in MRL/lpr mice. The kidneys of 
mice with Nrf2 overexpression showed slightly congested 
glomeruli and amelioration of renal tubule structural dis-
order. Thus, Nrf2 overexpression improved renal tissue 
injury in MRL/lpr mice (Fig. 1d-g).

HMGB1/TLR4/NF‑κB signaling pathway and downstream 
inflammatory factors in LN
The mRNA expression levels of HMGB1, TLR4, and 
NF-κB in the model group were higher (P < 0.05) than 
those in the control group. However, no significant dif-
ferences were detected in the mRNA expression of these 
proteins between the empty load and model groups 

(Fig. 2). In addition, WB and ELISA showed upregulation 
of HMGB1, TLR4, NF-κB, and their downstream inflam-
matory factors (IL-1β and TNFα) in the model group 
compared to those in the control group (P < 0.05) (Figs. 3 
and 4). These results suggest that the HMGB1/TLR4/
NF-κB signaling pathway is closely related to the occur-
rence and development of nephritis in a mouse model of 
lupus.

Nrf2 regulatory role in the HMGB1/TLR4/NF‑κB signaling 
pathway
The expression of Nrf2 mRNA in the kidneys of MRL/
lpr mice was significantly decreased compared to that 
in the control group, whereas overexpression of Nrf2 
increased mRNA expression significantly compared to 
that in the model group (P < 0.05) (Fig. 2). As mentioned 
in Sect. 3.1, kidney injury in the model group was severe, 
and Nrf2 overexpression improved glomerular conges-
tion and reduced kidney tissue disorders. Meanwhile, 
qPCR showed a reduction in HMGB1, TLR4, and NF-κB 
mRNA levels in the Nrf2 vector group compared with 
those in the model group (P < 0.05). WB and ELISA fur-
ther supported this decrease, with significantly reduced 
levels of HMGB1, TLR4, and NF-κB in the Nrf2 vector 
group, along with their downstream inflammatory fac-
tors IL-1β and TNF-α (Figs. 3 and 4).

Altogether, severe kidney injury was observed in the 
kidney tissue of MRL/lpr mice, resulting in decreased 

Fig. 1 Nrf2 adenovirus verification and HE staining. a‑c Immunofluorescence verification of adenovirus effective transduction: immunofluorescence 
of Nrf2 vector group (c) is significantly stronger than that of control group (a) and Nrf2 empty‑load group (b). d‑g Hematoxylin–eosin staining 
of kidney histology: in the control group, glomeruli and renal tubules structures are histologically normal with a small amount of hyperemia 
near some glomeruli but without inflammatory cell infiltration. In MRL/lpr mice (model group), the glomerulus is congested (black arrow) 
and structurally disordered, a small amount of hyperemia is observed near some glomeruli (red arrow), several renal tubular epithelial cells are 
exfoliated to the lumen (green arrow), and inflammatory cell infiltration can be detected (blue arrow). In the Nrf2 empty‑load group, the renal 
tubular lumen is congested, the boundary between the cells is unclear (red arrow), several renal tubular epithelial cells shed into the lumen (black 
arrow), and obvious inflammatory infiltration is observed. In the Nrf2 vector group, the glomerulus is congested (black arrow), and the disorder 
of tubular structure is alleviated compared with that in the model group
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Fig. 2 Nrf2, HMGB1, TLR4, and NF‑ κB mRNA expression in each group, detected by q‑PCR. a‑d Nrf2 mRNA expression is significantly decreased 
and HMGB1, TLR4, and NF‑κB expression is significantly increased in the model group compared to that in the control group; in Nrf2 vector group, 
the expression of Nrf2 mRNA is significantly upregulated, while the expression of HMGB1, TLR4, and NF‑ κB mRNA is significantly downregulated. 
(*Compared to the control group, P < 0.05; #Compared to the model group, P < 0.05, n = 3 per group)

Fig. 3 Nrf2, TLR4, and HMGB1 protein levels in each group, detected by western blotting. a‑b Nrf2 protein levels in the model group are decreased, 
while HMGB1 and TLR4 are increased, compared to that in the control group. Nrf2 overexpression group shows increased Nrf2 protein levels 
and decreased HMGB1 and TLR4, compared to that in the model group. Nrf2 levels are negatively correlated with those of HMGB1 and TLR4. 
(*Compared to the control group, P < 0.05; #Compared to the model group, P < 0.05, n = 3 per group)
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Nrf2 expression. Additionally, the expression lev-
els of HMGB1, TLR4, and NF-κB mRNA and protein 
increased to different degrees. After Nrf2 overexpres-
sion, kidney injury improved, and HMGB1, TLR4, and 
NF-κB levels were significantly re-established, which 
showed that Nrf2 and HMGB1/TLR4/NF-κB were 
negatively correlated in the kidney tissue of MRL/lpr 
mice.

TLR4+CXCR4+ PCs in the blood and kidney tissue of lupus 
model mice
Flow cytometry analysis showed increased the levels 
of PC and  TLR4+CXCR4+ PCs in the blood and kid-
ney tissue samples of the model group compared to 
those in the control group (Fig.  5). Nrf2 overexpres-
sion decreased both PC and  TLR4+CXCR4+ PCs lev-
els. In contrast, PC and  TLR4+CXCR4+ PCs levels in 
the blood and kidney of the Nrf2 load-empty group 
were higher than those of the control group (P < 0.05) 
but showed no significant difference compared to the 
model group (P > 0.05). These results indicate that 
 TLR4+CXCR4+ PCs were elevated in the blood and 
kidney tissues of MRL/lpr mice, showing an associa-
tion with LN.

Discussion
The absence of the Fas gene in MRL/lpr mice leads to the 
abnormal clearance of apoptotic debris or necrotic cells. 
Incompletely degraded nuclear fragments act as self-
antigens that activate the innate and adaptive immune 
system and autoantibody production. The antigen–anti-
body combination forms a circulating immune complex 
or an in situ immune complex that can cause kidney tis-
sue damage, triggering an inflammatory response and the 
production of large amounts of reactive oxygen species 
(ROS). Subsequently, this activates antioxidant responses 
and elevates Nrf2. However, with aggravation of inflam-
mation, oxidative stress resistance decreases and LN 
progression occurs [35, 36]. As an important component 
of adaptive immunity, B cells differentiate into PCs and 
secrete autoantibodies. It has been shown that PC differ-
entiation is accompanied by CXCR4 expression induc-
tion, and remain positive for this receptor [31, 32]. TLR 
signaling is indispensable for B lymphocyte homotype 
transformation and differentiation into secretory PCs, 
and it is the third signal for the proliferation and differen-
tiation of B lymphocytes [37].

This study showed a significant increase in MRL/lpr 
mouse blood and kidney PC(Blood PCs 9.25%, Blood 
PC 9.57%; Kidney PCs 8.02%, Kidney PC 4.55%), which 
might be involved in the characteristic renal parenchymal 

Fig. 4 IL‑1β, TNF‑ α, and NF‑ κB protein levels in each group, detected by ELISA. a‑c The levels of NF‑ κB, IL‑1β, and TNF‑ α are significantly 
upregulated in the model group. Nrf2 overexpression promoted a decrease in all these proteins. (*Compared to the control group, P < 0.05; 
#Compared with the model group, P < 0.05, n = 6 per group)

(See figure on next page.)
Fig. 5 The proportion of plasma cells detected by flow cytometry. a Typical representative flow scatter plots for each group: The scatter plot 
is divided into four sections, the upper right quadrant is double positive cells with the antigen markers indicated by the X‑axis and Y‑axis 
respectively,  TLR4+CXCR4+ PCs or  CD27+CD38+ PC, while the lower left quadrant is the opposite,  TLR4−CXCR4− PCs or  CD27−CD38.− PC. The upper 
left and lower right quadrants represent cells that are marked positive only for the Y‑axis parameter or the X‑axis parameter, respectively. b Flow 
histograms. The proportion of PCs and PC in the kidney and blood of the model group are significantly increased, compared to that of the control 
group. Nrf2 overexpression lowers this proportion in kindeys and blood than that in the model group.(*Compared with the control group, P < 0.05; 
#Compared with the model group, P < 0.05, n = 3 per group)
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Fig. 5 (See legend on previous page.)



Page 9 of 12Li et al. Pediatric Rheumatology          (2023) 21:130  

damage of LN.  TLR4+CXCR4+ PCs were also signifi-
cantly higher than those in control mice(Blood PCs 
0.13%, Blood PC 1.13%; Kidney PCs 5.07%, Kidney 
PC 1.68%). This suggests that  TLR4+CXCR4+ PCs are 
an important pathogenic plasma cell subset in lupus 
nephropathy, which is consistent with a report by Ma 
et  al. in which they demonstrated the significance of 
 TLR4+CXCR4+ PCs for autoantibody production and 
glomerulonephritis development in LN [34]. In another 
study of pathogenic PC in the development of LN, they 
found that the frequency of TLR4 + CXCR4 + PCs was 
positively correlated with the production of dsDNA anti-
bodies. After blocking TLR4, the secretion of dsDNA 
and other autoantibodies was significantly reduced, and 
the kidney damage was also improved [34]. In addition, 
the terminal differentiation of B cells requires partici-
pation of the Nrf2-regulated oxidative stress response. 
In fact, hydrogen peroxide  (H2O2) promotes B cell pro-
liferation and differentiation [38]. Our study suggests 
that Nrf2 gene overexpression (Blood PCs 0.28%, Blood 
PC 0.92%; Kidney PCs 5.75%, Kidney PC 2.06%) regu-
lates  TLR4+CXCR4+ PCs and PC levels in the blood 
and kidneys of a mouse model of lupus, with concomi-
tant amelioration of damaged tissue. These results sug-
gest that  TLR4+CXCR4+ PCs may play an important role 
in autoantibody production in active LN and that the 
lack of TLR4 affects cytokine production related to LN 
development.

Oxidative stress imbalance is involved in LN pathogen-
esis. Furthermore, Nrf2 is a key regulator of the antioxi-
dant stress pathway [39, 40]. Under oxidative stress, the 
increased electrophilic reagent or ROS reacts with Keap1 
cysteine residues, resulting in structural changes. This 
prevents ubiquitination of Nrf2, which accumulates in 
the cytoplasm and is transferred to the nucleus, where it 
binds to small musculoaponeurotic fibrosarcoma (sMaf). 
The Nrf2-sMaf dimer can recognize ARE in the nucleus 
and induce the transcription of antioxidant factors, such 
as glutathione S-transferase Alpha 2, NAD(P)H: quinone 
oxidoreductase 1, glutamate cysteine ligase, and heme 
oxygenase-1 (HO-1) [41–44].

Here, we show decreased Nrf2 levels in MRL/lpr mice 
and increased levels of HMGB1/TLR4/NF-κB and its 
downstream inflammatory factors TNF-α and IL-1β. 
Nrf2 overexpression in MRL/lpr mice increased Nrf2 
levels and decreased protein and cytokine levels in the 
corresponding inflammatory pathway. A study using die-
tary glycerol oleate to reduce LN also showed decreased 
Nrf2 levels in the kidneys of LN mice, which increased 
after the administration of dietary glycerol oleate and its 
derivatives. Subsequently, this inhibited the expression of 
pro-inflammatory biomarkers such as IL-1β and iNOS. 
These authors suggested that nephritis amelioration is 

associated with activation of the Nrf2 antioxidant stress 
pathway [45]. MRL/lpr mice developed more severe glo-
merulonephritis after exposure to the environmental 
toxin bisphenol A due to decreased Nrf2 expression [46]. 
Thus, Nrf2 may play an important regulatory role in pre-
venting LN progression. However, Morito et  al. showed 
that Nrf2 deficiency prolonged the lifespan of female 
lupus mice and speculated that Nrf2 deficiency enhanced 
apoptosis, which coincidentally improved the abnormal 
apoptosis feature of this mouse model. Additionally, the 
level of Nrf2 was related to lupus mouse strains and the 
role of Nrf2 in different stages of the disease [47, 48]. 
Nonetheless, the specific mechanisms underlying these 
observations require further investigation. In patients 
with LN, Nrf2 expression usually fluctuates slightly at 
the RNA level but markedly at the protein level [49]. As 
LN remains active for a long period with high oxidative 
stress, the antioxidant capacity of the body is gradually 
consumed, and Nrf2 content decreases.

Extracellular HMGB1 has been reported to increase 
macrophage inflammation and is highly correlated with 
histopathological features of renal injury in active nephri-
tis via the TLR4/MyD88/NF-κB/p65 signaling pathway 
in LN [50–52]. TNF-α and IL-1β are expressed as NF-κB 
target genes that trigger inflammation, whereas TNF-α 
can stimulate the release of HMGB1 and amplify its 
inflammatory effect [25, 53].

Several studies have found that HMGB1, as a potential 
biomarker of cLN, is positively correlated with disease 
activity and negatively correlated with renal function [54, 
55]. We have known that TLR can up-regulate cytokine 
levels and maintain inflammatory levels of LN. In a sin-
gle-center cohort study, TLR2 and TLR4 were implicated 
in the pathogenesis of cLN [56]. Another study showed 
that TLR7 and TLR9 cause renal cell injury by regulat-
ing downstream NF-κB expression. Meanwhile, they 
suggesting that the TLR/NF-κB pathway is a potential 
therapeutic target for LN. Here, we showed increased 
levels of HMGB1, TLR4, NF-κB and their downstream 
target genes TNF-α and IL-1β in MRL/lpr mice, com-
pared with control mice, as well as more severe inflam-
matory damage in kidney tissues.These results indicate 
the strong inflammation-mediating role of the HMGB1/
TLR4/NF-κB pathway in LN. However, there are limited 
data on the pathogenesis of cLN. Based on the severity of 
the course, treatment and prognosis, we estimate that the 
inflammatory response caused by HMGB1/TLR4/NF-κB 
is more obvious in cLN.

Nrf2 inducers play important roles in alleviating LN 
inflammation and delaying disease progression [57–60]. 
One potential mechanism is Nrf2-induced allevia-
tion of HMGB1-mediated oxidative damage [61, 62]. In 
our study, we successfully overexpressed Nrf2 in MRL/
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lpr mice with consequent inhibition of HMGB1 and 
the TLR4/NF-κB pathway, as well as its downstream 
inflammatory cytokines. This inhibitory mechanism 
may involve the Nrf2 target gene HO-1, which inhibits 
HMGB1 transfer to the cytoplasm, thereby alleviating 
inflammatory damage [63, 64]. Enhanced antioxidant 
capacity (regulated by Nrf2) can also inhibit ROS produc-
tion, reducing oxidative stress and HMGB1 extracellular 
release [65, 66]. Thus, we speculate that Nrf2 inhibitory 
effect may occurs through its downstream antioxidant 
elements.

Currently, cortisol hormones, immunosuppressants 
(included mycophenolate mofetil and cyclophospha-
mide), anti-rheumatic drugs, and biologics (included 
belimumab and rituximab) are main treatment options 
for SLE and LN. However, such as the side effects of hor-
mones and immunosuppressants for a long-term use 
and the limited safety and efficacy evidence for biolog-
ics in cSLE that affect the treatment efficacy and out-
come [67–69]. The high morbidity and mortality of cLN 
requires us to delve deeper into the pathogenesis of LN 
and discover potential therapeutic targets. As our study 
demonstrated that the potential role of Nrf2/HMGB1/
TLR4/NF-κB pathway in LN. The treatment of refractory 
LN with Nrf2, HMGB1 agonists has shown potential in 
several studies [70–72].

Unfortunately, there are some shortcomings in our 
study. Firstly, this study was conducted in a relatively 
small number of animal populations, so it cannot fully 
represent the SLE and LN populations. Second, although 
MRL/lpr mice are commonly used as model mice for 
studying SLE, it needs to be further confirmed whether 
they can be fully equivalent to human SLE due to racial 
limitations. We still need larger sample sizes and animal 
models that are closer human SLE for more accurate and 
effective studies.

Conclusion
Our study showed that  TLR4+CXCR4+ PCs increased 
significantly in MRL/lpr mice with severe renal injury. 
Furthermore, the HMGB1/TLR4/NF- κB pathway plays 
an important role in LN development. Nrf2, an antioxi-
dant stress regulator, inhibits this pathway. Therefore, the 
Nrf2/HMGB1/TLR4/NF-κB pathway plays an important 
regulatory role in the development and progression of 
LN. We also highlighted the dual role of TLR4 in B-lym-
phocyte proliferation, differentiation, and the inflamma-
tory pathway mentioned above.  TLR4+CXCR4+ PCs, 
Nrf2, and HMGB1 might have therapeutic significance in 
LN and therefore could serve as effective targets in future 
therapeutic strategies.
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