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Introduction
Kawasaki disease (KD; OMIM611775) is an acute, self-
limiting systemic vasculitis syndrome with the main clin-
ical manifestations of fever, oral mucosal changes, rash, 
cervical lymphadenopathy, conjunctivitisin, and extrem-
ity changes, known as mucocutaneous lymph node syn-
drome (MCLS) [1, 2]. It was first described by Japanese 
pediatrician Tomisaku Kawasaki and particularly affects 
children under five years of age. With an almost world-
wide increase in incidence, KD becomes now the lead-
ing cause of acquired heart disease in children, as it may 
cause coronary artery lesions in 15–25% of untreated 
patients or in 5–10% of patients treated with intravenous 
immunoglobulin (IVIG) [3]. The incidence of incomplete 
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Abstract
Background  Kawasaki disease (KD) is an acute pediatric vasculitis affecting genetically susceptible infants and 
children. Although the pathogenesis of KD remains unclear, growing evidence links genetic susceptibility to the 
disease.

Methods  To explore the genes associated with susceptibility in KD, we applied whole-exome sequencing to KD and 
control subjects from Yunnan province, China. We conducted association study analysis on the two groups.

Results  In this study, we successfully identified 11 significant rare variants in two genes (MYH14 and RBP3) through 
the genotype/allele frequency analysis. A heterozygous variant (c.2650G > A, p.V884M) of the RBP3 gene was 
identified in 12 KD cases, while eight heterozygous variants (c.566G > A, p.R189H; c.1109 C > T, p.S370L; c.3917T > G, 
p.L1306R; c.4301G > A, p.R1434Q; c.5026 C > T, p.R1676W; c.5329 C > T, p.R1777C; c.5393 C > A, p.A1798D and 
c.5476 C > T, p.R1826C) of the MYH14 gene were identified in 8 KD cases respectively.

Conclusion  This study suggested that nine variants in MYH14 and RBP3 gene may be associated with KD 
susceptibility in the population from Yunnan province.
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KD, which accounts for 15% and 47% of all KD cases [4], 
has also been reported to be increasing, posing a threat 
to the health of children’s coronary arteries [5–7].

Although KD can be diagnosed based on its typical fea-
tures ( such as fever, conjunctivitis, skin rashes, increased 
fibrinogen, etc.)[8], while the immunopathogenic mecha-
nisms of this disease remain unclear. Common and rare 
genetic variants could form many complex traits with 
complex interactions [9–11]. Domestic and foreign stud-
ies have found that inflammation-related genes IL-18 and 
IL-1B [1, 12, 13], inositol 1, 4, 5-trisphosphate 3-kinase 
C (ITPKC) [14, 15], and other gene polymorphisms are 
associated with KD [16]. Meanwhile, the family aggrega-
tion of KD patients indicated that genetic factors play an 
important role in the occurrence of KD [17–19]. How-
ever, the susceptibility loci obtained by the candidate 
gene method have been controversial because the results 
of various studies cannot lead to more accurate and con-
sistent conclusions due to differences in race, environ-
ment, and sample content. Finding susceptibility genes 
associated with complex diseases at the genome-wide 
level is an effective approach to investigating polygenic 
diseases. Commonly used methods include genome-
wide linkage studies, genome-wide association stud-
ies (GWAS), and whole-exome sequencing (WES) [20]. 
Most GWAS-derived Single nucleotide polymorphisms 
(SNPs) do not directly affect disease characteristics, 
but are an index marker linking disease-specific imbal-
ances and pathogenic variants [16, 21, 22]. Therefore, it 
is necessary to use other methods to identify rare coding 
variants that affect KD susceptibility. WES is one of the 
efficient sequencing techniques to identify rare protein-
coding variants. In this study, we determined to identify 
the KD-associated protein-coding variants through WES 
that may provide new insights into diagnosis and treat-
ment of KD.

Materials and methods
Patients and samples
The case-control sample set used in this study included 
93 KD patients and 91 non-KD control cases. All cases 
were obtained from the Kunming Children’s Hospital, 
Yunnan province, southern China, and unrelated to each 
other. Inclusion criteria for KD cases included patients 
met the criteria for KD (fever together with principal 
symptoms such as conjunctivitis, skin rashes, increased 
fibrinogen, etc.)[8, 23], non-infectious and no previous 
cancer or metastases. The control cases were non-KD 
patients without fever. This study was approved by the 
Ethical Review Board of Kunming Children’s Hospital, 
and informed consent was obtained from all of KD and 
control subjects.

Whole-exome sequencing and Sanger sequencing
WES was conducted using genomic DNA sam-
ples obtained from 93 children with KD. The exome 
sequences were efficiently enriched from 1  µg genomic 
DNA extracted from the peripheral blood using Agi-
lent liquid capture system (Agilent Sure Select Human 
All Exon V6 kit, Agilent Technologies, Santa Clara, CA, 
USA) according to the manufacturer’s protocol. Finally, 
Illumina Novaseq 6000 platform (Illumina, San Diego, 
CA, USA), with 150 bp pair fragments sequencing mode, 
was used for sequencing the genomic DNA for shotgun 
library construction. The overall genotyping success 
rate was 99.5%. Raw image files were processed using 
CASAVA v1.82 for base calling and generating raw data.

Sanger sequencing was performed to confirm the vari-
ants identified by WES. PCR was conducted with TaKaRa 
Taq (Takara, Osaka, Japan) under the following condi-
tions: 95 °C for 5 min; followed by 34 cycles at 95 °C for 
30 s, 59  °C for 30 s and 72  °C for 30 s; 72  °C for 5 min. 
PCR products were purified by gel electrophoresis and 
sequenced using ABI 3730xl DNA Analyzer with the Big-
Dye™ Terminator Cycle Sequencing Kit (Applied Biosys-
tems, Foster, CA, USA).

Statistical analysis
Variation frequencies were described as proportions, and 
SNP allele frequency comparisons between cases and 
controls were analyzed by Fisher’s exact tests and odds 
ratios [19], and 95% confidence intervals (CIs) calculated 
by unconditional logistic regression were used to ana-
lyze the association between SNPs and KD susceptibil-
ity. Two-tailed p-value < 0.05 was considered statistically 
significant.

Results
Baseline characteristics
In the KD group, there were 87 classic KD patients 
(93.55%), 8 incomplete KD patients (8.6%) and 2 unre-
sponsive to IVIG (2.2%). The mean age of KD group was 
2.40 ± 1.84 years (ranged from 7 days to 12 years), and 
the male to female ratio was 1.7:1 (59/34). It was slightly 
higher than the ratio of 1.5: 1 of KD patients generally, 
p-value < 0.05 according to Fisher’s exact test. The pro-
portion of KD patients with coronary artery aneurysms 
was 8.6% (8, 93). The mean age of control group was 
2.50 ± 1.76 years (ranged from 3 months to 12 years), 
and the male to female ratio was 1.6:1 (56/35). In KD 
and control groups, the proportions of Han were 80.65% 
(75, 93) and 84.62% (77, 91) respectively. The proportions 
of ethnicity were 19.35% (18, 93) and 15.38% (14, 91) 
respectively. The detail information of the patients was in 
supplement file 1.
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Filtering of candidate variants
A total of 349,054 variants were identified from exome 
sequence data of 93 KD cases and 91 controls. The fil-
tering steps including: filtering by MAF (MAF < 0.01), 
Picking of damage variants, case-control analysis. MAF 
filtering according to the population frequency databases 
include including 1000G(1000 Genome), ExAC(Exome 
Aggregation Consortium), and gnomAD (Genome 
Aggregation Database). Frameshift mutations, termi-
nator mutations, splice mutations, and missense muta-
tion with a Combined Annotation Dependent Depletion 
(CADD) [24] scores > 25 were retained. In the step, 8413 
protein-altering variants remained, among which 6466 
were missense SNV, 851 were frameshift, 394 were in 
splice-acceptor/donor sites, 687 were nonsense, and 15 
were start lost.

Associations with KD
ORs were valued by R package ggplot2, which performed 
deleterious when ORs > 1. Through association analy-
sis of these 8413 variants, we successfully identified 11 
variants in three genes (TTI1, MYH14, and RBP3) from 
46 cases (Fig. 1; Table 1), which showed nominal signifi-
cances (ORs = 2.3177 to 13.1963; p = 0.0025 to 0.0346) 
(Table 1). However, two variants in TTI1 gene (appeared 
in 26 cases) were excluded as the high allele frequency 
in control group. A heterozygous variant (c.2650G > A, 
p.V884M) of the RBP3 gene was identified in 12 KD 
cases, while eight heterozygous variants (c.566G > A, 
p.R189H; c.1109  C > T, p.S370L; c.3917T > G, p.L1306R; 
c.4301G > A, p.R1434Q; c.5026  C > T, p.R1676W; 
c.5329  C > T, p.R1777C; c.5393  C > A, p.A1798D and 
c.5476 C > T, p.R1826C) of the MYH14 gene were identi-
fied in 8 KD cases respectively. All of the variants were 
confirmed by Sanger sequencing.

Fig. 1  Overview of study design for data processing
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Discussion
KD is one of the most common systemic vasculitic illness 
of children under the age of five years, leads to coronary 
artery aneurysms in 25% of untreated patients [8, 23]. It’s 
a multisystem inflammatory process, presumably, the eti-
ology is an excessive immune response to possible infec-
tion or environmental triggers in genetically susceptible 
individuals [25]. People with KD may be inherently prone 
to other diseases, especially children younger than five 
years. Previous studies indicated that the incidence of 
KD in Asia was higher than that in the United States and 
Europe [25–29], and a higher incidence of males than 
females [2, 30]. Incidence within families is higher than in 
sporadic cases [17, 29]. KD could be regarded as a multi-
factorial and polygenic (complex) disorder [31, 32].

GWAS has identified some well-defined KD-associated 
loci and part of the genetic background successfully in 
recent studies, while it does not contribute significantly 
to exploring the pathogenesis of KD [33, 34]. Different 
from the GWAS, WES technology can explore global 
genetic mutations of many other complex diseases. It 
could discover rare mutations in the encoding sequence, 
which may cause its protein-coding variants that contrib-
ute to KD susceptibility. Jae-Jung Kim et al. explore the 
impact of coding variation on KD using WES for the first 
time [20], while no studies in the Chinese population.

In this study, we performed WES to identify rare 
protein-coding variants responsible for KD sus-
ceptibility. Nine variants in RBP3 and MYH14 gene 

were significantly enriched in KD cases. c.2650G > A 
(p.V884M) in exon 1 of RBP3 gene were identified in 12 
KD cases, appears to be present at a high rate (12.9%) in 
the KD group. Eight variants of the MYH14 gene were 
identified in 8 KD cases respectively. All the allele fre-
quencies were lower than 0.0275%, which indicated both 
of them were rare variants of genes. RBP3 and MYH14 
gene are the first time reported to be associated with KD.

RBP3 gene encode interphotoreceptor retinol-binding 
protein, transport retinoids between the retinal pigment 
epithelium and the photoreceptors [35]. In 2015, Arno 
et al. first described retinal dystrophy in children caused 
by homozygous nonsense RBP3 mutations, highlighting 
the requirement for IRBP in normal eye development 
and visual function [36]. Yokomizo et al. [37] found that 
elevated expression of photoreceptor-secreted RBP3 
may play a role in protection against the progression of 
diabetic retinopathy. To date, sixteen RBP3 gene vari-
ants have been recorded in the HGMD database (https://
www.hgmd.cf.ac.uk/ac/index.php), including eleven mis-
sense variants, three nonsense variants, one frameshift 
variant, and one fragment deletion variant (Fig. 2). In the 
study, c.2650G > A (p.V884M) locates in the third of four 
tandem homology modules [27, 38, 39], causes amino 
acid change from Valine to methionine. Chen P et al [27] 
indicated c.2650G > A (p.V884M) was associated with 
corneal curvature in Asian populations. Although previ-
ous researchers thought RBP3 was associated with reti-
nal retinoid transport and corneal changes, our research 

Table 1  Rare or frequency-unavailable variants associated with KD patients
Pt Position SNP ID Gene Exon AA change CDs Accession P Value OR (95% CI)
4, 18, 
22, 38, 
47, 49, 
56, 70, 
73, 76, 
84, 89

Chr10: 
47,351,134

rs11204213 RBP3 Exon 1 p.V884M c.2650G > A NM_002900 0.0025d 13.1963(1.8761; 
574.6005)

91 Chr19: 
50,281,727

rs752792064 MYH14 Exon 31 p.R1434Q c.4301G > A NM_024729 0.0346d 8.3945(1.0870; 
379.2676)

89 Chr19: 
50,223,086

rs766546274 Exon 4 p.R189H c.566G > A NM_024729

88 Chr19: 
50,280,044

NA Exon 29 p.L1306R c.3917T > G NM_024729

88 Chr19: 
50,301,707

rs368219210 Exon 38 p.A1798D c.5393 C > A NM_024729

63 Chr19: 
50,301,790

rs187789045 Exon 38 p.R1826C c.5476 C > T NM_024729

30 Chr19: 
50,293,670

rs377096949 Exon 37 p.R1777C c.5329 C > T NM_024729

20 Chr19: 
50,292,282

rs761720529 Exon 35 p.R1676W c.5026 C > T NM_024729

6 Chr19: 
50,244,260

rs150806988 Exon 10 p.S370L c.1109 C > T NM_024729

Note: Pt, patients; SNP, single nucleotide polymorphism; CHR, chromosome; AA, amino acid; OR, odd ratio; NA, not available

*Bold values: The statistically significant (p-values < 0.05). dSignificant p-value

https://www.hgmd.cf.ac.uk/ac/index.php
https://www.hgmd.cf.ac.uk/ac/index.php
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suggests an association with KD also. Conjunctivitis 
and subconjunctival hemorrhage are common pheno-
types in KD [8, 23]. While in this research, c.2650G > A 
(p.V884M) maybe related to the ocular phenotypes in KD 
such as conjunctivitis and subconjunctival hemorrhage, 
which needs further research.

MYH14 is a member of the nonmuscle myosin II family 
of ATP-dependent molecular motors, which interact with 
cytoskeletal actin and regulate cytokinesis, cell motil-
ity, and cell polarity [40]. Sixty gene variants of MYH14 
gene have been recorded in the HGMD database, within 
54 missense variants, three nonsense variants, and three 
frameshift variants. Missense variant is the most com-
mon pathogenic variant, scattered across the whole gene. 
Eight missense variants of MYH14 gene were discov-
ered in this study (Fig. 3), only c.5393 C > A( p.A1798D) 
has been published before. The homozygous variant 
(c.5393  C > A) may cause perineal fistulas in Anorectal 
malformations, based on the genetic and computer anal-
yses, related to normal cloaca development by nonmuscle 
myosin heavy chain IIC (NMHC IIC) localization analy-
sis [41]. It seems no significantly relevant to the result of 
this study. Wang M et al [42] indicated that c.5417 C > A 
(p.A1806D) in MYH14 gene led to sensorineural hearing 
loss (SNHL). SNHL was reported in approximately 36% 

patients with Kawasaki [43], rare variants in MYH14 gene 
maybe potentially associate with the symptom.

Above all, RBP3 and MYH14 were first reported to 
be associated with KD susceptibility in chinses popula-
tion. This study’s limitation is a relatively small sample 
size, so the samples of coronary artery aneurysms and 
ethnic minorities were limited, unable to conduct more 
diversified data analysis. Studies on large sample sizes 
are needed in future to further reveal the relationship 
between candidate genes and KD.

Conclusion
WES was performed on the KD and control group to 
identify susceptibility genes in patients from southwest 
China, and two protein-coding gene (RBP3 and MYH14) 
were identified in the case-control analysis (ORs, 8.3945 
to 13.1963; p-value, 0.0346 to 0.0025). These results 
provide insights into novel candidate genes and genetic 
variants that may be involved in KD and related KD com-
plications. Further association studies with expanded 
KD samples from southwestern China or different ethnic 
groups are needed to confirm these results.

Abbreviations
KD	� Kawasaki disease
MCLS	� Mucocutaneous lymph node syndrome
ITPKC	� Inositol 1, 4, 5-trisphosphate 3-kinase C

Fig. 3  Protein diagrams shown for MYH14 variants are depicted against a protein model. Variants (R189H, S370L, L1306R, R1434Q, R1676W, R1777C, 
A1798D, and R1826C) listed above the protein model are new to this study, while the ones below were published previously

 

Fig. 2  Protein diagrams shown for RBP3 variants are depicted against a protein model. Variants (V884M) listed above the protein model are new to this 
study, while the ones below were published previously
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RBP3	� Retinoid-binding protein 3
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