
REVIEW Open Access

Gut microbiota-host interactions and
juvenile idiopathic arthritis
Miika Arvonen1,2,3, Lillemor Berntson4, Tytti Pokka2,3,5, Tuomo J Karttunen2,6,7, Paula Vähäsalo2,3,5

and Matthew L Stoll8*

Abstract

Background: Juvenile idiopathic arthritis is the most common form of chronic arthritis in children. There is
mounting evidence that the microbiota may influence the disease.

Main body: Recent observations in several systemic inflammatory diseases including JIA have indicated that
abnormalities in the contents of the microbiota may be factors in disease pathogenesis, while other studies in turn
have shown that environmental factors impacting the composition of the microbiota, such as delivery mode and
early exposure to antibiotics, affect the risk of chronic inflammatory diseases including JIA. Microbial alterations may
predispose to JIA through a variety of mechanisms, including impaired immunologic development, alterations in
the balances of pro- versus anti-inflammatory bacteria, and low-grade mucosal inflammation. Additional
confirmatory studies of microbiota aberrations and their risk factors are needed, as well as additional mechanistic
studies linking these alterations to the disease itself.

Conclusions: The microbiota may influence the risk of JIA and other systemic inflammatory conditions through a
variety of mechanisms. Additional research is required to improve our understanding of the links between the
microbiota and arthritis, and the treatment implications thereof.
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Background
The last decade has witnessed an explosion of research
into the causes and consequences of alterations in the
microbiota. One condition that has recently become the
subject of interest in this respect is juvenile idiopathic
arthritis (JIA). JIA is a heterogeneous autoimmune dis-
ease comprising seven categories, several of which have
distinctive clinical and genetic features [1]. Some of the
categories are related to adult counterparts, for which
there is also accumulating evidence of a role of the
microbiota. In this review, we discuss the nature of the
microbiota in JIA, factors that may predispose to dysbio-
sis, and mechanisms by which an altered microbiota
might predispose to arthritis.

Querying the microbiota
The oldest method of identifying bacteria is culture.
While this remains an important tool in clinical medi-
cine, it is an ineffective means of identifying the contents
and relative abundances of complex communities of or-
ganisms, many of which are difficult if not impossible to
culture [2]. Until recently, a widely used tool consisted
of amplification of the 16S ribosomal DNA gene
followed by gel electrophoresis. This allowed for visual
assessment of differences in the contents of the micro-
biota, but did not itself provide information on the iden-
tity let alone the function of any of the organisms.
Today, technology permits sequencing of whole commu-
nities. A detailed discussion of sequencing technologies
and associated informatics tools are beyond the scope of
the review and are available to the interested reader [3].
Two major sequencing technologies are in use today:
amplicon-based, which typically consists of PCR amplifi-
cation followed by sequencing of the 16S ribosomal
DNA region; and whole genome sequencing (WGS), in
which every bit of microbial DNA is sequenced.
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Sequencing of the 16S ribosomal DNA region takes
advantage of the immense variability among bacteria
contained in this one region. Compared to WGS, this
approach has the advantage of lower cost and relatively
easier analytic tools; in contrast, WGS can more readily
identify bacteria at the species and even strain level and
also provides direct functional information on the
bacteria.

Intestinal microbiota in JIA
Two studies have evaluated the contents of the fecal
microbiota in children with JIA. In a recent Finnish
study [4], microbiome profiles of fecal samples of 30 un-
treated children with JIA (mostly with oligoarticular and
rheumatoid factor-negative polyarticular JIA) were ana-
lysed with 16S region-based sequencing profiling, and
were compared to fecal samples of 27 healthy controls.
The proportion of bacteria belonging to the phylum Fir-
micutes was significantly lower in children with JIA
compared to controls, with a compensatory increase in
the Bacteroidetes phylum. At the genus level, increased
Bacteroides was observed among the children with JIA.
Similar abnormalities have also been reported in chil-
dren with or at risk for type 1 diabetes mellitus [5–7]
A similar, albeit not statistically significant (21 % ver-

sus 11 %, P = 0.150) increase in the Bacteroides genus
was also observed in the feces of a cohort of 25 children
with enthesitis-related arthritis (ERA) as compared to 13
healthy control subjects [8]. This study also showed ele-
vated levels of Akkermansia muciniphila in a subset of
patients, but none of the controls [8]. In contrast, levels
of Faecalibacterium prausnitzii were reduced in the
ERA patients. This latter finding is consistent with ob-
servations in both pediatric and adult inflammatory
bowel disease (IBD) [9].

Contribution of perinatal factors in the gut
microbiome
Genetic and environmental factors influence the devel-
opment of the microbiota. A discussion of the genetic
factors is beyond the scope of this review, which is
geared towards potentially modifiable influences. Among
those, early life factors such as mode of delivery, lacta-
tion and early exposure to antibiotics influence the type
of bacteria colonizing intestinal mucosa and maturation
of mucosal immunity [10–12]. Vaginal delivery promotes
the infant gut to colonize with Bifidobacteria, which is
associated with stimulation of tolerogenic immune re-
sponses [13, 14]. In contrast, infants delivered by C-
section harbour bacterial communities found on the
mother’s skin surface such as Staphylococcus, Coryne-
bacterium, and Propionibacterium spp, and higher
counts of IgA, IgG, IgM secreting cells during first year
of life [15–17]. Interestingly, C-section delivery is

associated with an increased risk of development of mul-
tiple chronic inflammatory conditions, including food al-
lergy, inflammatory bowel disease, type 1 diabetes and
JIA [18–20].
Another perinatal variable that influences the micro-

biota is mode of feeding. As with mode of delivery, sev-
eral observational studies have demonstrated alterations
in the fecal microbiota of children bottle-fed compared
to those who are nursed. Just as vaginally born infants
have higher Bifidobacterium as compared to C-sectioned
infants, nursed infants appear to have higher abundance
of the same species, as well as increased abundance of
Lactobacilli and Streptococci, two normal components of
the infant fecal microbiota [21]. There is some data indi-
cating that bottle feeding is associated with an increased
risk of autoimmune disease like ankylosing spondylitis
[22] and type 1 diabetes [23]. Similarly, breast-feeding
appears to be protective against JIA, as evidenced by ei-
ther increased likelihood or duration of breast-feeding
among JIA children compared to controls [24–26].

Antibiotic use, microbiome alteration and risk
of JIA
Another environmental influence on the microbiota is
antibiotic usage. That antibiotics have a short-term effect
on the contents of the microbiota is self-evident. Nu-
merous studies have evaluated whether this effect is sus-
tained over time (Table 1.). The methods of assessment
of the faecal samples were variable including culture, gel
electrophoresis, and amplification followed by sequen-
cing of 16S ribosomal DNA, tools which as discussed
above have increasing sensitivity in respective order to
identify the complexity of bacterial organisms present in
a sample. It appears that in many instances antibiotics
do indeed affect the microbiota long-term, even up to
two years in one study [27]. To some extent, it appears
that antibiotics that target anaerobic organisms were
more likely than others to have a lasting impact. How-
ever, ciprofloxacin did as well, particularly when patients
were exposed to multiple courses [28]. In addition, a
cross-sectional study in children indicated that prior ex-
posure to macrolide antibiotics had substantial and
long-lasting effects on the microbiota [29].
Two registry-based case controls studies have evalu-

ated whether antibiotic use affects subsequent risk of
JIA. Horton et al. [30] identified medical records from a
database of 550 general practices in the United King-
dom, identifying 152 children with JIA and 1520
matched controls. Arvonen et al. (2015) collected data
from three Finnish national registers to identify 1298
children with JIA and 5179 matched controls [31]. Both
studies found a significant association between antibiotic
use and subsequent JIA (Table 2), both also reporting a
dose-dependent relationship; the Finnish registry as well
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Table 1 Summary of human studies evaluating long-term changes to the microbiota following exposure to antibiotics

Study Antibiotic Patient
population

Comparison
Group

Habitat Method of
assessment

Duration
of follow-
up

Results

De la
Cochetiere
(2005)
[72]

Amoxicillin x
5 days

6 adults None Feces TTGE of 16S
rDNA
amplicons

Two
months

After two months, profiles were >90 % similar
to baseline in 5/6 subjects.

Dethlefsen
2011 [28]

Two courses of
ciprofloxacin x
5 days

3 adults None Feces Sequencing of
16S rDNA

10 months Altered community composition in 3/3,
although there was more variability between
subjects vs before and after abx.

Dethlefsen
2008 [73]

One course of
ciprofloxacin x
5 days

3 adults None Feces Sequencing of
16S rDNA

30 days Samples returned to baseline at the
community level after 30 days, although
individual taxa failed to recover.

Fouhy
2012a [74]

One course of
ampicillin and
gentamycin

9 full-term
neonates
under age
2 days

9 full-term
neonates

Feces Sequencing of
16S rDNA

8 weeks Decreased evenness and richness; alterations
in multiple genera. Of note, 9/9 controls but
only 4/9 patients were delivered vaginally

Jakobsson
2010 [75]

One course of
metronidazole and
clarithromycin x
7 days

3 adults 3 adults Throat
and
feces

Sequencing of
16S rDNA and
T-RFLP

4 years General recovery of loss of diversity in both
habitats. However, long-lasting effects at the
taxonomic level were seen, particularly in the
throat.

Jernberg
2007 [27]

One course of
clindamycin x
7 days

4 adults 4 adults Feces T-RFLP and
rep-PCR on
Bacteroides

2 years Decreased number of bacteroides clonal types
in exposed subjects

Lode
2001b [76]

Linezolid x 7 days 12 adults None Feces Culture and
identification

35 days No lasting effect

Lode
2001b [76]

Amoxicillin / clav x
7 days

12 adults None Feces Culture and
identification

35 days No lasting effect

Mangin
2012 [77]

Amoxicillin / clav x
5 days

18 adult
men

None Feces qPCR for
Bifidobacterium
and PCR-TTGE

64 days No difference in total bifidobacteria; however,
similarity to baseline dropped to 50 % rapidly
and never reached 60 %.

Savino
2011 [78]

Ceftriaxone x
5 days

26 full-term
breast-fed
infants

None Feces Culture 20 days No changes noted in counts of
enterobacteriaceae, enterococci, lactobacilli, or
total bacteria

Vervoort
2015c [79]

Nitrofurantoin x 3
– 15 days

Five or eight
subjects

Four or five
subjects

Feces Sequencing of
16S rDNA

28 days Only transient differences in the frequency of
the phyla.

aThe duration of treatment was not specified. bThis Lode study was a crossover design with a 35 days washout, in which half received amoxicillin / clavulonic acid
first and the other half received linezolid first. cThe methods said five pts and four controls, but the table said 8 and 5, respectively. No information on the age or sex
of the subjects. Abbreviations: qPCR quantitative PCR, rDNA ribosomal DNA, rep-PCR repetitive sequence-based PCR, RFLP restriction fragment length polymorphisms, T-
RFLP terminal restriction fragment length polymorphism, TTGE temporal temperature gradient gel electrophoresis

Table 2 Characteristics of the material and results in studies on exposure to antibiotics and risk of juvenile idiopathic arthritis by
Horton et al. [30] and Arvonen et al. [31]

Horton et al. Arvonen et al.

United Kingdom Finland

Cases = 152, Controls = 1520 Cases = 1298, Controls = 5179

Risk of later development of JIA after exposure to OR (95 % CI)a P OR (95 % CI)b P

Any antibiotics 2.1 (1.2 to 3.5) 0 .007 1.6 (1.3 to 1.9) <0.001

Anaerobic antibiotics onlyc 1.6 (1.0 to 2.6) 0.040 1.3 (1.04 to 1.7) 0.021

Non-anti-anaerobic onlyc 1.6 (1.1 to 2.3) 0.009 1.2 (0.9 to 1.7) 0.216

Both non-anti-anaerobic and anti-anaerobic antibioticsc NA NA 1.4 (1.1 to 1.8) <0.001

Dose response yes yes
aModels adjusted for matching, any infection, and any personal autoimmune disease (AID)
bModel adjusted for the number of antiobiotic regiments before index day
cFor this analysis, anti-anaerobic antibiotics were broad spectrum penicillins, clindamycin, metronidazole, and tetracyclines (including doxycycline); aerobic
antibiotics were cephalosporins, levaquines, macrolides, and sulfonamides
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showed that early exposure (<24 mos) was associated
with risk of developing JIA (OR 1.4, 95 % CI 1.2–1.6).
The UK study also found that this relationship held even
after adjusting for infections; this was not addressed in
the Finnish register-based study. The two studies did dif-
fer with respect to one critical finding: whether the anti-
biotics differ in their association with JIA. The UK study
grouped antibiotics into those with versus without an-
aerobic coverage (Table 2), finding that exposure to both
categories had a similar effect on the risk of subsequent
JIA. The rationale for such a grouping is that the vast ma-
jority of enteric organisms are either facultative or obligate
anaerobes, and as noted above, antibiotics with primarily
anaerobic coverage appear to have a longer-lasting effect
on the gut microbiota as opposed to antibiotics that pri-
marily target aerobic organisms. Although not initially
published in the Finnish study, we performed for the pur-
poses of this a review conditional regression analysis of
the previously published data using the same definition of
anaerobic antibiotics used in the UK study. After adjust-
ment for total number of courses of antibiotics, children
exposed only to aerobic antibiotics had a non-significantly
increased risk (OR = 1.2, p = 0.122), while those exposed
to only anti-anaerobic antibiotics had a significantly in-
creased risk (OR = 1.3, p = 0.021), and those exposed to
both categories had the highest risk (OR = 1.4, p = 0.003).
That is, children exposed to a variety of different antibiotic
categories appear to be at higher risk than those exposed
to a more limited repertoire of antibiotics, even after
adjusting for total number of courses, suggesting that the
greater the overall perturbation of the microbiota, the
greater the risk of JIA.

Mechanisms by which the microbiota might
predispose to JIA
Dysbiosis: excessive “bad” or insufficient “good” bacteria
The most straightforward explanation by which the
microbiota might predispose to JIA pertains to its con-
tents. Although true pathogens are infrequently identi-
fied in most 16S studies performed in developed
nations, certain bacteria appear to have the capacity to
promote an inflammatory process, while others appear
to be protective. For example, Scher and colleagues
identified abundant Prevotella copri in many newly diag-
nosed rheumatoid arthritis (RA) patients, demonstrating
as well that this bacteria could directly trigger inflamma-
tory responses in mice [32]. Conversely, as noted above,
Stoll and colleagues reported decreased abundance of F.
prausnitzii in children with ERA [8]. This particular spe-
cies is generally considered to have anti-inflammatory ef-
fects through production of short-chain fatty acids
(SCFAs) such as butyrate [33] or by direct effects on
cytokine production [34]. SCFAs serve as major sources
of energy for the intestinal enterocytes and also regulate

the differentiation of T cells, promoting a regulatory
phenotype [35, 36]. Additionally, as noted above, both
16S studies of children with JIA demonstrated increased
Bacteroides genus in children with JIA compared to con-
trols. The potential for this genus to demonstrate patho-
genicity in arthritis was illustrated by animal models of
arthritis, in which the disease is abrogated in the germ-
free state but present upon re-introduction of Bacter-
oides genus [37, 38]. Thus, certain bacteria can have
direct inflammatory or anti-inflammatory effects pro-
moting or inhibiting the development of inflammatory
disease.
There is, however, limited direct evidence in JIA that

the microbiota is directly responsible, or that changes in
the microbiota can affect changes in the disease. Zhang
et al. (2015) identified differences in the oral and gut
microbiota in treatment-naïve RA patients, finding as
well partial normalization following induction of
disease-modifying therapy as well as pre-treatment dif-
ferences in good versus poor responders to therapy [39].
This has not been studied comprehensively in children
with JIA. Berntson et al. reported on a child with polyar-
ticular JIA refractory to multiple medicines, in whom a
beneficial clinical response to exclusive enteral nutrition
was accompanied by elevation of Firmicutes/Bacteroi-
detes ratio during the treatment, although the micro-
biota changes were not conclusively demonstrated to be
responsible for the clinical improvement [40]. Interest-
ingly, in some other autoimmune diseases, correlation of
microbiome composition and clinical course have been
documented. A study of children at risk for type 1 dia-
betes showed that changes in the composition and diver-
sity of the microbiota preceded development of clinical
disease [7]. Likewise, a study of pediatric IBD patients
revealed that disease activity was associated with re-
duced microbial richness, abundance of butyrate pro-
ducers, and relative abundance of Gram-positive
bacteria [41].
Importantly, bacteria need not be the only type of

microorganism that can affect immune responses and
autoimmune diseases; helminths may also modify intes-
tinal microbiome homeostasis [42]. In addition, helminth
colonization and molecules from helminths have been
demonstrated to trigger regulatory pathways and attenu-
ate the course of experimental arthritis [43]. Helminths
have even been studied as a novel treatment approach
for IBD [44]

Immune programming
A second mechanism by which the microbiota could im-
pact the risk of inflammatory disease may pertain to the
ontogeny of the microbiota, rather than its nature in the
mature state. A dramatic illustration of this possibility
comes from studies of germ-free animals, in which the
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small intestinal mucosal immune system fails to develop
properly. For example germ free mice develop fewer
Peyer’s patches, germinal centers and lymphoid follicles
in small intestinal mucosa and express reduced numbers
of Th17 cells in small intestinal lamina propria [45].
Moreover, there may be a critical window of time during
which the proper microbiota must be present for opti-
mal immunologic development, as recently proposed by
Blumberg and colleagues [46]. This possibility was re-
ported by Cahenzli et al. (2013), who confirmed previous
findings of elevated IgE levels in germ-free mice [47], a
murine counterpart to the hypothesis that today’s
cleaner environments may be associated with the in-
creased incidence of autoimmune conditions such as
atopy and IBD [48]. A key finding in the study by
Cahenzli was that mice exposed to normal microbiota
prior to 35 days of life had normal IgE levels, while those
whose exposure took place beyond that point had high
levels. Similarly, colonization of young, but not old,
germ-free mice with a normal microbiota abrogated the
accumulation of invariant natural killer T cells in the
colonic lamina propria and lung [49]. This concept of a
window of opportunity may also explain why Bacter-
oides appears to be associated with autoimmunity in
young [4, 7, 50], but not adult [32, 51], subjects; Vatanen
et al. [52] proposed that the lipopolysaccharide (LPS) tail
of Bacteroides is less immunostimulatory as compared to
the LPS tail of bacteria such as E. coli, and that early ex-
posure to Bacteroides in countries such as Finland predis-
poses to autoimmunity due to excessive innate immune
tolerance towards LPS in general. Thus, it is plausible that
antibiotics in young children, in whom the microbiota is
undergoing rapid changes to a more mature state, would
have longer lasting effects on both the contents of the
microbiota as well as subsequent immunologic function,
as compared to antibiotic exposure in older children or
adults. If so, this underscores the necessity of avoiding un-
necessary usage of antibiotics.

Aberrant microbe-specific systemic immune responses
in JIA
A given bacterial species need not be present in abnormal
quantities to cause problems; it may also lead to inflam-
mation by being a target of the immune system. Anti-
bodies against flagellated bacteria are associated with and
poor prognostic factors for Crohn’s Disease [53]. There is
also contradictory evidence as to whether these antibodies
are associated with spondyloarthritis [50].
Pediatric patients may have different immunologic tar-

gets. Stoll et al. demonstrated that in children with ERA
[8], serum IgA against B. fragilis was directly propor-
tional to fecal Bacteroides abundance, while controls had
the opposite relationship, which they took to indicate
that patients had a more pathogenic response against

this organism. Additionally, Singh et al. (2011) demon-
strated increased T cell responses to the Salmonella
outer membrane protein in ERA patients compared to
controls [54].
These findings of aberrant immunity to intestinal or

commensal organisms are not necessarily limited to
children with ERA. Children with Cyclic Citrullinated
Peptide (CCP) antibody positive, as compared to nega-
tive, JIA demonstrated elevated levels of antibodies
against Porphyromonas gingivalis, Prevotella intermedia,
and Fusobacterium. This study also showed an associ-
ation between high anti-bacterial antibodies levels and
clinical symptoms of gingival irritation [55]. These data
are generally consistent with studies in the adult coun-
terpart, RA [56]. The presence of antibodies directed
against specific microbial agents does not necessarily in-
dicate that the antibodies themselves are pathogenic.
Antibodies reflect activity of Th cells, which may them-
selves be the pathogenic cells. This appears to be the
case in IBD, where adoptive transfer of flagellin-specific
CD4+ T cells into immunodeficient mice results in col-
itis [57]. Similarly, disease in the HLA-B27 transgenic
rat model requires the presence of a thymus [58]; while
the nature of any antigens in this model are not known,
the absence of disease in the germ-free state suggests
the possibility of microbial antigens [59]. The causes of
such aberrant immunity as well as the mechanisms by
which microbe-specific immunity may contribute to JIA
are ripe for further exploration.

Local immune responses and mucosal integrity in JIA
The intestinal microbiota may also have local effects on
mucosal integrity and intestinal immunity. The intestinal
mucosa limits access of gut bacteria to the lymphoid tis-
sues, thereby preventing dysregulated activation of the
local innate and adaptive immune system [60]. As dis-
cussed above, increased Bacteroides and Akkermansia
muciniphila have been reported in children with JIA; in-
creased abundance of Bacteroides has also been ob-
served in children with type 1 diabetes [5, 6], as well as
in animal models of spodyloarthritis [61, 62]. Multiple
species in the Bacteroides genus, as well as Akkermansia
Muciniphila, degrade mucin [63, 64], an important com-
ponent of primary mucosal defense (Fig. 1). It is plaus-
ible that mucin degradation can increase access of the
bacteria to the intestinal immune system, promoting an
inflammatory process, as proposed by Tailford and col-
leagues [65]. Along those lines, increased intestinal per-
meability has been identified both in children with JIA
[45] and in adults with ankylosing spondylitis [66].
Intestinal inflammation in children with JIA has been

evaluated mostly in the ERA category. Studies of unse-
lected children with ERA have demonstrated increased in-
testinal inflammation by colonoscopy [75], leukocyte
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scintigraphy [76], and fecal calprotectin [67]. Children
with oligoarticular and polyarticular JIA may also have in-
testinal immune dysregulation, although studies are lim-
ited to children with gastrointestinal complaints.
Specifically, Arvonen and colleagues reported “low grade”
intestinal mucosal alterations such as increased numbers
of small intestinal intraepithelial γδ +T cells and cytotoxic
lymphocytes, and increased HLA-DR expression in ileal
mucosa [68–70], the latter correlating with measures of
JIA disease activity. Pichler et al. (2016) also identified in-
creased eosinophilic gastrointestinal infiltrations in a cohort
of JIA patients with gastrointestinal symptoms [71] in-
creased eosinophilic gastrointestinal infiltrations. Thus, it is
possible that abnormalities in mucosal immunity is a wide-
spread phenomenon in children with JIA. However, some
of these findings have not directly been linked to the
microbiota.

Conclusions
Children with multiple categories of JIA have an altered
intestinal microbiota, with the characteristics of micro-
biota sharing some features linked with other auto-
immune diseases such as type 1 diabetes [5, 6] and IBD
[9]. In addition, the immunologic responses to the
microbiota are altered in at least ERA and RF+ JIA, and
aberrant intestinal immunity appears to be present in

multiple JIA categories. Several of the identified risk fac-
tors of JIA, including antibiotic use, C-section delivery,
and possibly infant feeding practice, may all exert their
role via alterations in the intestinal microbiota, poten-
tially at a critical window of mucosal immunologic de-
velopment. In the future, the role of immune regulatory
function of helminths should also be studied, since they
can attenuate the course of experimental arthritis [43].
As we learn more about factors that influence the devel-
opment of the microbiota as well as the mechanisms by
which the microbiota might contribute to inflammation,
we may develop novel tools to prevent or even treat JIA.
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gens. Antigens that have broken through the epithelial barrier to the basolateral lamina propria generate inflammatory responses, while those
presented to Peyer’s patches by periodic sampling typically generate regulatory responses [80, 81]. Additionally, T cells activated in mesenteric
lymph nodes (not shown) express intestinal homing receptors such as the integrin α4β7, which guide the T cells back to the intestinal
mucosa, where they can participate in protective or inflammatory immune responses.
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