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Blood gene expression profiling in pediatric
systemic lupus erythematosus and systemic
juvenile idiopathic arthritis: from bench to bedside
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Abstract

Blood gene expression profiling has led to major advances in the field of rheumatology over the last few decades.
Specifically, DNA microarray technology has been integral in increasing our knowledge of key players in the
pathogenesis of some rare pediatric rheumatic diseases. Our group, using microarray analysis, identified the
interferon (IFN) gene signature in pediatric systemic lupus erythematosus (SLE) and has published data that suggest
high doses of intravenous corticosteroid treatment may have benefit over strictly oral regimens. Additionally, DNA
microarray technology led to our discovery that the interleukin (IL)-1 gene signature is associated with systemic
juvenile idiopathic arthritis (sJIA) and to the use of IL-1 blockade with anakinra in this disease. We also reported the
biologic rationale for use of anakinra early in the disease course. Anakinra is now being used as first-line treatment
in sJIA in multiple centers. Herein, we review how information obtained from blood gene expression profiling has
changed our clinical practice.
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Review
In the last few decades, there have been major advances
in understanding the biology and treatment of rheumatic
diseases. Older genetic studies in humans and animal
models identified candidate genes that might contribute
to pathogenesis of disease; however, few studies trans-
lated to identify novel therapeutic targets in clinical tri-
als. In the late 1980’s, experiments in human synovial
tissue explants identified tumor necrosis factor (TNF) as
an important cytokine in the pathogenesis of rheumatoid
arthritis (RA) [1]. These studies led to the production of
TNF blockers that are widely used today in the treat-
ment of inflammatory arthritis and have changed the
course of disease [2,3]. Subsequent work has led to the
use of additional biologic agents in rheumatic diseases,
including inhibitors of interleukin (IL)-1, IL-6, and tar-
gets of B and T cell production/function [4-7].
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Despite these advances, most rheumatic diseases still
lack specific diagnostic tests and optimal biomarkers.
Much work remains to truly elucidate the biology and
pathogenesis of these diseases. Blood gene expression pro-
filing is a powerful and efficient tool in this regard. Older
techniques, like Northern blot and reverse-transcription
PCR, measure the expression of a few genes at a time.
DNA microarray is one technique first used in the 1990’s
for large-scale genomic comparisons [8,9]. DNA microarray
refers to a technology in which DNA fragments are spotted
onto a solid substrate, like a glass slide or nylon membrane,
or DNA oligonucleotides are chemically synthesized on a
substrate. This substrate can be used to analyze variation in
the genome (genome-wide analysis) or for gene expression
microarray. In gene expression microarray, messenger RNA
is first isolated from a target sample, converted to comple-
mentary DNA (cDNA), fluorescently-labeled, and then
hybridized to the DNA probe on the solid substrate. A laser
scans the array to detect the fluorescent signal from
hybridization. Bioinformatics tools calculate the amount of
cDNA bound to the probe. Gene expression microarray
technology can measure up to 50,000 messenger RNA
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transcripts at one time (reviewed in [10]). Technology has
advanced to include analysis of gene regulation, genome-
wide methylation signatures, and individual exons, which
allows investigation of alternative splicing [11]. An alterna-
tive approach to hybridization-based gene-expression pro-
filing techniques is using RNA sequencing techniques that
enable millions of cDNA bases to be sequenced in a short
amount of time [11]. Quantitative gene expression in differ-
ent conditions is compared by microarray analysis to study
specific diagnostic biomarkers, changes in gene expression
in the course of disease, and changes in gene expression in
response to treatment. Differential gene expression is
then verified at the protein level by enzyme-linked im-
munosorbent assay (ELISA), protein microarrays, or
other multiplexed assays [11]. This information can
provide clues to the pathogenesis of disease.
Gene expression profiling to discover diagnostic and

prognostic biomarker signatures was first developed in
the field of cancer. Gene expression studies revealed dif-
ferentially regulated gene transcripts in invasive melan-
oma, identifying a property of highly aggressive disease
[12]. Additionally, DNA microarray identified subtypes
of diffuse large B cell lymphoma based on gene expres-
sion indicative of different stages of B cell differentiation
[13]. This technology has since been used to study a var-
iety of disease processes [14,15].
We have been fortunate to have a very close and long-

standing collaboration between our clinical team and la-
boratory colleagues. For many years, we have routinely
collected standardized information and prospectively
performed validated outcome measures on our pediatric
Systemic Lupus Erythematosus (SLE) and Systemic Ju-
venile Idiopathic Arthritis (sJIA) patients seen in clinic,
as well as performed serial gene expression profiling on
their blood. This microarray analysis has been integral in
Figure 1 Key Studies in the Role of IFN and Innate Immunity in SLE. T
pathogenesis of lupus.
xour study of rheumatic diseases and, in effect, has changed
our clinical practice. Children offer unique advantages in
the study of rheumatic disease because of lack of comorbid
conditions and presentation of more aggressive disease.
Herein, we review how blood gene expression profiling
using DNA microarray analysis has helped our understand-
ing of pediatric SLE and sJIA, and is now shaping our treat-
ment of these diseases.

Systemic lupus erythematosus
SLE has been classically described as a prototypic auto-
immune disease with a wide array of clinical manifestations
and characterized by the production of autoantibodies to
components of the cell nucleus. Consequently, components
of the adaptive immune system were long the focus of re-
search. More recently, the more sensitive test of gene ex-
pression profiling in peripheral blood mononuclear cells
(PBMCs) has identified a significant role for components of
the innate immune system in SLE. Using PBMCs rather
than specific cell subsets allows for analysis of gene expres-
sion in a complex disease where there is interplay of mul-
tiple cell types. In 2003, our group was the first to report
the presence of an interferon (IFN)-induced gene signature
in the majority of our pediatric patients with active SLE
[16]. In spite of heterogeneity of disease, there was a distin-
guishing homogeneous pattern of 14 upregulated genetic
targets of type I IFN. Some of the 14 genes were related to
known autoantigens in SLE and apoptosis. Other groups
also reported the IFN-gene signature in adult patients with
SLE in the same year [17-19] (See Figure 1 for key publica-
tions on the role of IFN in SLE).
The preeminence of the type I IFN signature in a dis-

ease previously considered to be a disorder of adaptive
immunity, and in which genetic linkage and association
studies had not, at that time, identified candidate lupus
imeline of publications implicating IFN and innate immunity in the
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susceptibility genes within the IFN pathway, was surpris-
ing. However, a few previous observations suggested a
role for dysregulated innate immunity and type I IFN in
SLE. Some patients with lupus had been reported to
have circulating IFNα [20]. Further, the sera of some SLE
patients induced the differentiation of normal monocytes
into dendritic cells (DCs), an effect which is mediated by
IFNα [21]. DCs are critical for the maintenance of periph-
eral tolerance [22,23]; however, some patients with SLE
have monocytes with properties of DCs that induced allo-
geneic T cell activation rather than tolerance [21]. Addition-
ally, immune complexes of DNA and double-stranded
DNA antibodies (normally found in SLE serum) induced
plasmacytoid dendritic cells (pDC) to secrete IFNα
[24]. Clinically, pDCs and IFN gene activation have
been observed in inflamed tissues, skin lesions, and
nephritic glomeruli from SLE patients [25-27]. IFNα treat-
ment of patients with cancer and chronic viral infections
induced autoantibody formation along with symptoms of
SLE in a small percentage of patients [28].
Since 2003, several studies have supported the role of

IFN in the pathogenesis of SLE. More recent studies
have returned to the genetics approach in humans to
identify genes associated with SLE that map into the type
I IFN pathway (reviewed in [29]). An initial candidate gene
study found an association of interferon regulatory factor 5
(IRF5) with SLE [30]. IRF5 is a transcription factor down-
stream of type I IFN and Toll-like receptor (TLR) signaling
pathways. Certain IRF5 haplotypes are associated with
serum IFNα activity in SLE [31]. Subsequent genome wide
association studies have identified 47 independently con-
firmed SLE variants, 57% of which map in or near type I
IFN or 7 genes with known key roles in type I IFN produc-
tion or signaling, including IRF5, IRF7, IRAK1, TNFAIP3,
TNIP1, IFIH1, and TYK2 (reviewed in [29]). Many of these
genes are also involved in TLR signaling pathways, an im-
portant link between innate and adaptive immunity.
Murine models of SLE have helped to support the role

of IFN in lupus suggested by microarray and genetic
studies. Several studies showed that immune complexes
signal through TLR7/9 and initiate B cell and DC activa-
tion, leading to production of cytokines, including type I
IFN, in lupus mice [32-34]. Deficiency in type I IFN recep-
tor in NZBWF1 mice [35] and IRAK1 (TLR signaling mol-
ecule) in a lupus-susceptible mouse [36] led to reduced
lupus disease activity. Mutation in IFIH1 gene (cytosolic
sensor of dsRNA) triggered chronic type I IFN production
and aggressive disease in lupus-susceptible, Fcγ receptor-
deficient mice [37]. Microarray, genetic, and murine studies
together provide an important link between TLR signaling
and activation of type I IFN in SLE.
The description of monogenic lupus-related disorders

has shed more light on the importance of the type I
IFN pathway in the pathogenesis of SLE. Complement
deficiencies, including C1q, were the first identified
single-gene defects to cause lupus-like disease (reviewed
in [38]). Patients with C1q deficiency develop lupus with
high penetrance [39] and have high levels of IFNα in the
serum and cerebrospinal fluid [40], presumably from
defective clearance of apoptotic debris and lack of the
inhibitory effect that C1q has on IFNα production by
pDCs and monocytes [40]. Defects in DNase proteins
also lead to the accumulation of extracellular DNA in
apoptotic debris and are associated with SLE [41,42].
More recently, rare monogenic interferonopathies

causing lupus-like disease have been described. Aicardi-
Goutieres syndrome (AGS) is an early-onset progressive
inflammatory encephalopathy with phenotypic similarity to
both congenital infection and SLE [43]. AGS is caused by
mutations in genes that encode nucleases. Defective func-
tion of these nucleases results in the intracellular accumula-
tion of DNA, which can activate production of IFN in a
TLR-independent manner. Blood gene expression profiling
has revealed a type I IFN gene signature in patients with
AGS [44,45]. The spectrum of disease associated with these
mutations is not yet fully defined, but one study reports ap-
proximately 2% of SLE patients have mutations in the gene
encoding the TREX1 exonuclease [46], mutations which
can cause AGS. Mutation in TREX1 is also associated with
familial chilblain lupus, which is a nodular form of cutane-
ous lupus [47]. Another monogenic disorder involves muta-
tion in tartrate-resistant acid phosphatase (TRAP), which
causes spondyloenchondrodysplasia (SPENCD) syndrome,
characterized by skeletal dysplasia, cerebral calcifications,
and lupus-like autoimmunity [48]. TRAP dephosphor-
ylates/inactivates osteopontin, which is involved in
TLR9 signaling and type I IFN production in pDCs
[49]. SPENCD patients have high levels of circulating
IFNα and a prominent IFN gene signature [50]. These
studies suggest IFN as a future target for therapy in the
treatment of SLE and monogenic interferonopathies.
Clinically, it has been observed that 25% of SLE pa-

tients have endogenous anti-IFNα autoantibodies in the
serum [51]. This subset of patients also had lower serum
IFN levels associated with decreased IFN-pathway and
disease activity, suggesting that neutralization of IFN ac-
tivity may reduce disease activity in SLE. Therapies tar-
geting IFN are currently being trialed in lupus patients
(reviewed in [52]). Two IgG1 human monoclonal anti-
bodies against IFNα have been developed (Sifalimumab
and Rontalizumab). MEDI-546 is another monoclonal
antibody that blocks the α subunit of the IFNα/β receptor.
IFNα blockade significantly reduced the IFN-gene signature
in patients, but no significant effects on disease activity
have been observed so far [52]. An alternative approach
is immunization with a synthetic compound made of
IFNα2b molecules linked to a strong immunogenic car-
rier (IFNα kinoid), which induces the production of
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anti-IFNα autoantibodies. Immunization led to a poly-
clonal anti-IFNα response in patients, but no significant
effect on disease activity [52]. Further studies on IFN
blockade are necessary to determine its safety and effi-
cacy in SLE.
In further support of the importance of the innate im-

mune system in the pathogenesis of lupus, our 2003 study
also identified a pattern of overexpressed granulopoiesis-
related genes in SLE [16] (See Figure 1 for key publications
on the role of innate immunity in SLE). This finding corre-
lated with previous studies suggesting a role for neutrophils.
Although numbers of circulating neutrophils in SLE are de-
creased, their presence in lesions of vasculitis and lupus
nephritis is well described [53-55]. More recently, secretion
of neutrophil-derived proteins in the urine has been shown
to be a surrogate marker for active nephritis in pediatric
SLE [56]. Treatment with granulocyte colony-stimulating
factor (GCSF), which promotes granulopoiesis, may be
associated with lupus flares [57]. In subsequent work to elu-
cidate the role of neutrophils in lupus, we have demon-
strated that anti-ribonucleoprotein antibodies found in
SLE stimulate neutrophils to release extracellular traps
composed of DNA and protein complexes [58]. These
neutrophil extracellular traps (NETs) activate pDCs to
produce high levels of IFNα in a DNA- and TLR9-
dependent manner. Thus, neutrophils also contribute to
the dysregulation of IFN in SLE.
Beyond highlighting the role of innate immunity in

SLE, gene expression profiling also has therapeutic im-
plications. When the IFNα signature was first recognized
in the PBMCs of lupus patients [16], it was observed that
the only therapy that extinguished the IFNα signature was
high dose intravenous methylprednisolone (IVMP). It was
also noted that the IFN signature returned in approximately
one week after the IVMP was administered. Although the
mechanism for this was not understood at that time, this
observation changed our practice in treating pediatric pa-
tients with SLE. In association with other immunosuppres-
sion, we use frequent intermittent high-dose IVMP with
low-dose daily oral steroids (rarely exceeding 10 mg/day) to
induce remission in patients with severe systemic inflam-
mation or major organ system involvement (CNS manifes-
tations or lupus nephritis), and to treat severe flares of
disease as well. Anecdotally, we have been impressed that
this early intensive approach seems to limit the long term
corticosteroid requirement and decrease steroid-related
side effects in our patients.
Subsequently, the mechanism for this steroid resist-

ance in SLE has been elucidated. Our group studied the
effects of oral versus IV steroid regimens on the IFN sig-
nature in SLE using DNA microarray analysis [59]. Oral
glucocorticoid therapy up to 20 mg daily dosing in lupus
patients caused normalization of multiple transcriptional
modules by microarray; however genes in the IFN pathway
were not affected. In contrast, intermittent IVMP pulse
therapy normalized the IFN signature. Typically, pDCs, the
major source of IFNα production, are sensitive to ster-
oid therapy [60,61]. However, ligation of TLR7 and 9
by self RNA and DNA in pDCs from lupus patients
conferred increased survival and resistance of the pDC
to glucocorticoid-mediated death. Higher steroid doses
were able to overcome this resistance and extinguish
the IFN signature by killing the pDC. The return of the
IFN signature in one week coincided with the regener-
ation of the pDC population. The data suggest a bio-
logic rationale for the use of intermittent high dose
steroid therapy in the treatment of lupus.
Although steroids are used ubiquitously in SLE and

cause significant morbidity, the use of corticosteroids in
this disease is entirely empiric. Currently, there is no evi-
dence base to support any specific doses, route of ad-
ministration, or tapering schedules of corticosteroids in
lupus. Since it is very unlikely that a randomized com-
parative trial will be performed to assess steroid regi-
mens in SLE, the Childhood Arthritis and Rheumatology
Research Alliance (CARRA) has developed consensus
treatment plans for induction therapy of proliferative
lupus nephritis with either mycophenolate mofetil or IV
cyclophosphamide in combination with one of three op-
tions for standardized use of glucocorticoids [62]. These
include a primarily oral, a mixed oral/IV, and a primarily
IV regimen, the last of which is based on the science
described above. The hope of the consensus treatment
plans is to follow large numbers of pediatric SLE pa-
tients and eventually be able to compare effectiveness of
the different therapeutic strategies in proliferative lupus
nephritis.

Systemic juvenile idiopathic arthritis
Systemic Juvenile Idiopathic Arthritis (sJIA), although
historically classified as a subtype of juvenile arthritis, is
easily distinguished from other subtypes of JIA by the
presence of high grade fever and significant systemic in-
flammation, as well as the variable presence of evanes-
cent rash, lymphadenopathy, serositis, enlargement of
liver or spleen, and macrophage activation syndrome
(MAS). The systemic features of sJIA may persist for
months followed by the development of chronic arth-
ritis. Up to 50% of children with sJIA have active arth-
ritis as long as 10 years after diagnosis is made [63-65].
Also, sJIA is less responsive to standard therapies, such
as methotrexate and TNF blockers, and more frequently
requires the use of systemic steroids, in contrast to
other JIA subtypes. Indeed, the long-term use of corti-
costeroids has been a major cause of morbidity in this
condition. Thus, more specific biologic targets are ne-
cessary to treat disease and prevent morbidity caused
by systemic steroids.
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In 2003, it was noted that the serum from 4 of our pa-
tients with sJIA, when cultured with PBMCs from
healthy donors, upregulated the transcription of genes in
the IL-1 cytokine/cytokine receptor family in addition to
chemokines involved in chemotaxis of stem cells, neutro-
phils, monocytes/macrophages, lymphocytes, and DCs
[66]. There was also increased secretion of IL-1β protein
by healthy PBMCs cultured with sJIA serum. Thus, sJIA
serum induced both transcription and translation of IL-
1β in healthy PBMCs. Furthermore, activated PBMCs
from sJIA patients in culture produced high levels of IL-1β,
but not IL-6 or TNF, compared to healthy age-matched
controls. These novel findings were published in 2005 and
suggested that dysregulation of IL-1 production is central
to the pathogenesis of disease, and that IL-1 blockade might
be beneficial in our patients with sJIA [66] (See Figure 2 for
key publications on the role of IL-1 in sJIA).
At that time anakinra, a recombinant human IL-1 sol-

uble receptor antagonist (rIL-1Ra) with a short half-life
of four to six hours was the only IL-1 blocker commer-
cially available. Anakinra had initially been studied in
adult patients with sepsis [67,68]. Large clinical trials
were done using anakinra in doses up to 2 mg/kg/hr to
study therapeutic efficacy and safety in septic shock.
Anakinra did not improve survival but was found to be
safe in this very sick population as it did not increase
mortality or cause any additional adverse events com-
pared to placebo. IL-1 blockade with anakinra had also
been studied in large clinical trials of adults with
rheumatoid arthritis (RA) [69] with a good safety profile.
Thus, we decided to try anakinra in nine of our patients
with sJIA who had active disease resistant to conven-
tional aggressive treatment [66]. Seven of nine patients
had systemic symptoms, and eight had active, uninter-
rupted arthritis with disease duration of 23–144 months.
They were all being treated with oral prednisone, in
addition to an IVMP regimen and/or methotrexate in
the majority of patients. Some had previously failed
treatment with TNF blockers, IVIG, and cyclosporin.
Treatment with anakinra 2 mg/kg, up to 100 mg, in a
daily subcutaneous injection resulted in a significant re-
sponse in seven and a partial response in two of the nine
Figure 2 Key Studies in the Dysregulation of IL-1 in Systemic JIA. Tim
sJIA and treatment with IL-1 blockade.
patients. This dramatic clinical response to anakinra
confirmed that IL-1 is an important mediator of sJIA.
Since this study, similar responses have been seen in
sJIA at other centers [70-72], and a good safety profile
was demonstrated in a small trial of pediatric patients
with polyarticular JIA [73].
A subsequent study first identified a sJIA-specific gene

signature that uniquely differentiated sJIA from infection
and other inflammatory diseases [74]. We compared gene
expression in PBMCs from 44 sJIA patients in various
stages of disease to children with acute infection, SLE, pyo-
genic arthritis pustulosis acne (PAPA) syndrome, as well as
healthy controls. 88 sJIA-specific genes were identified, 12
of which accurately classified an independent set of sJIA pa-
tients with systemically active disease. An important aspect
of this data was the demonstration that the sJIA signature
was most evident during the systemic phase of the disease,
which suggested that anakinra would be most useful during
this phase of the disease.
As a result of this finding, our clinical practice in the

treatment of sJIA changed. We now routinely use ana-
kinra as first-line therapy, essentially as a steroid-
sparing agent, either markedly reducing or eliminating
our use of corticosteroids. In a recent retrospective
chart review of our sJIA patients treated with anakinra
for the past 10 years, 38/51 (75%) achieved inactive
disease with 31/51 (60%) sustaining this state long enough
to meet Wallace criteria for clinical remission on medica-
tion. Twenty-two of these patients were treated without
any steroids (manuscript in preparation).
Gene expression in sJIA has been remarkably stable

across different patient cohorts. Microarray analysis of
PBMCs of sJIA patients in the ANAJIS trial showed
significant upregulation of innate immunity and under-
expression of adaptive immunity gene modules before
treatment, similar to our Dallas sJIA cohort. The ANA-
JIS trial was a small multicenter, randomized, double
blind, placebo-controlled trial done to study efficacy of
Anakinra in treatment-resistant sJIA patients with ac-
tive disease [75]. The 24 patients in this study were
steroid-dependent with a minimum of six month dis-
ease duration. Active disease in the majority of patients
eline of publications describing the importance of IL-1 dysregulation in
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at enrollment was characterized by polyarthritis and
not fever, indicating that many patients were in the
arthritic and not systemic phase of disease. Results
showed anakinra treatment to be more effective in the
short term. Additionally, several gene expression modules
normalized at 1 and 6 months in those who responded to
treatment with anakinra. These results corresponded with
our prior work [74] and another study [71] that suggested
anakinra may be more useful in the systemic phase of dis-
ease. Another observation of interest in the ANAJIS trial
was that anakinra treatment also induced an IFNα gene
signature.
Anakinra as a first-line therapy has also been em-

braced by other centers [76,77]. A recent prospective co-
hort study of 20 patients with steroid-naïve, new-onset
sJIA showed that rIL-1Ra is effective in the majority of
patients as monotherapy [77]. 75% of patients had an
ACR Pediatric 90 response or inactive disease after three
months and 65% after one year on rIL-1Ra alone. Approxi-
mately one-third of patients required additional medication
to maintain clinical response. Treatment with rIL-1Ra
could be stopped in the majority of responders within one
year during a 32-month follow up period. Due to hetero-
geneity of disease, larger clinical trials are needed to study
safety, appropriate dosing of anakinra, and predictors of
response to anakinra in sJIA.
CARRA has developed consensus treatment plans and

standardized assessment schedules for sJIA in clinical
practice across North America [78]. Four standardized
treatment plans were developed, one of which uses ana-
kinra as first-line therapy with optional glucocorticoid
treatment. The consensus treatment plans will allow the
collection of data on large numbers sJIA patients treated
with anakinra and other medications to evaluate compara-
tive effectiveness in an observational setting. IL-1 blockade
with IL-1β monoclonal antibody in two randomized-
controlled trials has also been found to be effective in
patients with active systemic features of sJIA concomi-
tantly treated with glucocorticoids [79].

Other inflammatory diseases
Pediatric rheumatologists care for patients with uncom-
mon inflammatory diseases. There are cases where sys-
temic inflammation is present without a clear etiology or
definitive diagnosis. We have used DNA microarray
analysis to help guide therapy in pediatric patients with
inflammatory diseases of unclear etiology. We have
followed an 8-year-old female patient with a history of
recurrent strokes since 1 year of age, daily fevers up to
103°F, and livedo reticularis rash. Evaluation for infec-
tion, malignancy, and hypercoagulability was negative.
She has had evidence of systemic inflammation, but no
autoantibodies. It was suspected that she had a focal
cerebral vasculitis/vasculopathy on imaging studies. The
patient’s blood gene expression profile was analyzed by
DNA microarray and revealed an IFN gene signature,
similar to that found in SLE, but without overexpression
of plasma cell genes. Thus, she was treated as a lupus-like
condition with major organ involvement, with intermit-
tent IVMP and IV cyclophosphamide treatment regimen
transitioning to mycophenolate mofetil. Although her rash
improved, she continued to have daily fevers. Subsequently,
an IL-1 gene signature was identified in her blood, suggest-
ing that she might have an autoinflammatory condition.
IL-1 blockade was started with anakinra with initial im-
provement in fevers and no recurrence of stroke. The gene
associated with her condition was recently identified as
CECR1 (cat eye syndrome chromosome region, candidate
1) by whole-exome sequencing [80]. CECR1 gene encodes
adenosine deaminase 2 (ADA2) protein. In a cohort of
patients followed at the National Institutes of Health, loss-
of-function mutations in CERC1 were associated with
early-onset recurrent strokes, systemic vasculopathy and
vasculitis. Knockdown of ADA2 homologue in zebrafish
caused intracranial hemorrhage and neutropenia [80]. The
function of this protein is currently under investigation.
Our patient is currently managed in collaboration with
the NIH with etanercept, anakinra, mycophenolate mofe-
til, IVIG, and oral prednisone to control symptoms.

Conclusions
Although gene expression profiling has advanced our
understanding of the basic biology of several rheumatic
conditions and has led to more rational treatment
strategies, challenges still exist in the field of pediatric
rheumatology in the diagnosis and treatment of rare
and chronic autoimmune and inflammatory diseases.
Many diseases are diagnosed based on classification
criteria that include nonspecific clinical and laboratory
findings. Lack of specific diagnostic biomarkers often
delays diagnosis and treatment, sometimes leading to
severe complications. Disease course is then character-
ized by symptom flare and remission. We currently do
not have objective measures of global disease activity
or the ability to predict flares based on biology.
With the advent of DNA microarray technology, we

are closer than ever before in identifying biomarkers for
SLE and sJIA. Blood gene expression profiling has iden-
tified IFN and neutrophil-related genes signatures in
SLE and IL-1 gene signature in sJIA. Another group has
identified IFN-regulated chemokines as potential bio-
markers of SLE disease activity [10,81]. Current research
in our group is directed at finding biomarkers for the
diagnosis of SLE and sJIA, monitoring the course of dis-
ease on treatment, and for the early prediction of disease
activity flares. It is our hope that this work will ultim-
ately lead to specific biomarkers that can be routinely
used in clinical practice to diagnose disease, predict
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flares of disease activity, and to determine appropriate
treatment.
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