

MEETING ABSTRACT

Open Access

PW03-014 - TLR4 and MEFV variants are Behçet's risk factors

Y Kirino^{1,2*}, Q Zhou², Y Ishigatsubo¹, N Mizuki³, Y Kim⁴, DL Kastner², A Gül⁵, EF Remmers²

From 7th Congress of International Society of Systemic Auto-Inflammatory Diseases (ISSAID) Lausanne, Switerland. 22-26 May 2013

Introduction

Genome-wide association studies (GWAS) are a powerful means for identifying genes with disease-associated common variants, but they are not well-suited to detect genes with disease-associated rare or low-frequency variants. It has long been debated whether the innate immune system is involved in the pathogenesis of Behçet's disease (BD) but genetic evidence to support this hypothesis is sparse.

Objectives

To determine whether rare and low frequency variants in genes involved in innate immunity are associated with BD.

Methods

In the current study, non-synonymous variants (NSVs) identified by deep exonic resequencing of 10 genes found by GWAS (*IL10, IL23R, CCR1, STAT4, KLRK1, KLRC1, KLRC2, KLRC3, KLRC4*, and *ERAP1*) and 11 genes selected for their role in innate immunity (*IL1B, IL1R1, IL1RN, NLRP3, MEFV, TNFRSF1A, PSTPIP1, CASP1, PYCARD, NOD2*, and *TLR4*) were evaluated for BD association in Japanese and Turkish populations. A differential distribution of the rare and low frequency NSVs of each gene in 2461 BD cases compared with 2458 controls was evaluated by three different burden tests.

Results

By stringent criteria requiring at least one burden test with study-wide significance (p < 0.0024) and a corroborating test with at least nominal significance (p < 0.05), rare and low frequency NSVs in one GWAS-identified

gene, IL23R (p = 6.9 x 10^{-5}), and one gene involved in innate immunity, TLR4 (p = 8.0×10^{-4}), were associated with BD. In addition, damaging or rare damaging NOD2 variants were nominally significant across all three burden tests applied (p = 0.0063 to 0.045). Furthermore, carriage of MEFV-M694V, but not other MEFV mutations known to cause recessively inherited familial Mediterranean fever, conferred BD risk in the Turkish population (OR = 2.65, p = 1.8×10^{-12}).

Conclusion

Rare and low frequency NSVs of two novel BD-associated genes, *MEFV* and *TLR4*, implicate innate immune and bacterial sensing mechanisms in BD pathogenesis. Furthermore, disease-associated *IL23R* rare and low frequency NSVs add to the common variant GWAS evidence implicating this locus.

Disclosure of interest

None declared.

Authors' details

¹Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan. ²Inflammatory Disease Section, Medical Genetics Branch, NIH/NHGRI, Bethesda, USA. ³Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan. ⁴Genometrics Section, Inherited Disease Research Branch, NIH/NHGRI, Baltimore, USA. ⁵Istanbul Faculty of Medicine, Department of Internal Medicine, Division of Rheumatology, Istanbul University, Istanbul, Turkey.

Published: 8 November 2013

doi:10.1186/1546-0096-11-S1-A240

Cite this article as: Kirino et al.: PW03-014 - TLR4 and MEFV variants are Behçet's risk factors. Pediatric Rheumatology 2013 11(Suppl 1):A240.

¹Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan Full list of author information is available at the end of the article

