

ORAL PRESENTATION

Open Access

Systemic juvenile idiopathic arthritis is associated with *HLA-DRB1* in Europeans and Americans of European descent

Michael Ombrello^{19*}, Elaine F Remmers¹⁹, Alexei A Grom⁴, Wendy Thomson¹, Alberto Martini⁹, Marco Gattorno⁹, Seza Ozen¹², Ahmet Gul¹⁷, John F Bohnsack³⁰, Andrew S Zeft³², Elizabeth D Mellins²⁴, Jane L Park²³, Claudio Len²⁸, Colleen Satorius²⁹, Ricardo AG Russo²¹, Terri H Finkel⁵, Rae SM Yeung¹⁴, Rayfel Schneider¹⁴, Sampath Prahalad⁷, David N Glass⁴, Roger C Allen²², Nico Wulffraat³¹, Pierre Quartier¹³, Maria Odete E Hilario²⁸, Kevin Murray²⁰, Sheila Oliveira⁸, Jordi Anton¹⁵, Anne Hinks¹, Eleftheria Zeggini³⁵, Carl Langefeld³⁴, Susan Thompson⁶, Jeffrey Chaitow², Justine Ellis¹⁸, Davinder Singh², Andre Cavalvanti²⁸, Blanca Bica¹⁶, Flavio Sztajnbok²⁷, Hakon Hakonarson³, Katherine A Siminovitch²⁵, Kirsten Minden¹¹, Peter Haas¹⁰, Tobias Schwarz³³, Daniel L Kastner¹⁹, Patricia Woo²⁶

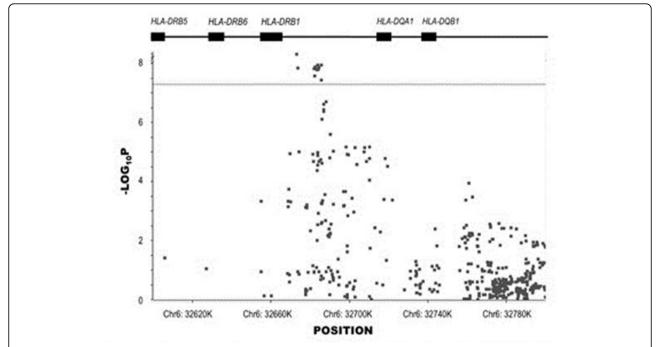
From 2011 Pediatric Rheumatology Symposium sponsored by the American College of Rheumatology Miami, FL, USA. 2-5 June 2011

Purpose

Systemic juvenile idiopathic arthritis (sJIA) is a complex inflammatory disease whose etiology remains unknown. sJIA is distinguished from other forms of juvenile idiopathic arthritis (JIA) by its characteristic features including requisite quotidian fever and salmon-colored, evanescent skin rash, but also by an absence of autoantibodies. Based on its unique phenotype among JIA subtypes, it has been suggested that sJIA may be autoinflammatory rather than autoimmune in nature, and consistent with this, sJIA is distinct among JIA subtypes for its inconsistently detectable association with *HLA* genes. In this study, we sought to use SNP genotyping in a large patient collection to identify sJIA susceptibility loci.

Methods

We genotyped 576 children fulfilling ILAR criteria for systemic arthritis and 366 control subjects free of sJIA or autoimmune disease. The collection included 205 cases and 210 controls from Cincinnati Children's Hospital, 185 cases from the repository at University of Manchester, 56 cases and 60 controls from University of Genova, 54 cases from Hacettepe University, 42 cases from the University of Utah, 34 cases from Stanford University,


and 96 controls from Istanbul University. SNP genotyping was performed using Illumina Omni1M Quad v1.0 beadchips and iScan platform. Omni1M beadchip data from 60 unrelated CEU HapMap individuals were obtained through Illumina's iControlDB. SNP associations were evaluated using SNP & Variation Suite 7, excluding SNPs with call rates below 95%, minor allele frequencies below 0.05, or Hardy-Weinberg Equilibrium p below 0.001, producing a dataset of 690,672 SNPs in 576 cases and 426 controls. To address population stratification, we employed principal components (PC) analysis to identify and exclude samples with differing genetic backgrounds. We excluded 60 sJIA samples on this basis, reducing the size of the collection for final analysis to 516 cases and 426 controls. After correcting for the top 10 PCs, the genomic inflation factor reflected minimal population stratification ($\lambda_{GC} = 1.01$).

Results

We identified 12 SNPs within *HLA-DRB1* with PC-corrected associations that exceeded a stringent threshold for genome-wide significance (p < 5 x 10^{-8}). These SNPs were part of a larger group of 45 SNPs with p < 5 x 10^{-5} in the *MHC* class II gene cluster. The effect size of the sJIA-associated SNPs ranged from odds ratios of 1.45 to 1.65. Notably, the effect size of this association is modest,

 19 NHGRI, NIH, Bethesda, MD, USA Full list of author information is available at the end of the article

Figure 1 SNP Associations surrounding *HLA-DRB1* in sJIA. Displayed is a plot of the PC-corrected $-\log_{20}p$ values of association for SNPs surrounding *HLA-DRB1*. Horizontal line at y=7.3 represents genome-wide significance threshold (p < $5x10^{-8}$).

relative to the effect of associated *HLA* genes in other JIA subtypes and other autoimmune diseases. Figure 1.

Conclusion

A large collaborative effort to identify sJIA patients and a careful genetic matching strategy have allowed us to clearly detect an association signal within the class II region of the *MHC* of sJIA patients, albeit with more modest effect sizes than those detected in other JIA subtypes. This suggests at least some contribution of autoimmunity to the pathogenesis of this complex disorder.

Disclosure

Michael Ombrello: None; Elaine F. Remmers: None; Alexei A. Grom: None; Wendy Thomson: None; Alberto Martini: None; Marco Gattorno: None; Seza Ozen: None; Ahmet Gul: None; John F. Bohnsack: None; Andrew S. Zeft: None; Elizabeth D. Mellins: None; Jane L. Park: None; Claudio Len: None; Colleen Satorius: None; Ricardo A.G. Russo: None; Terri H. Finkel: None; Rae S.M. Yeung: None; Rayfel Schneider: None; Sampath Prahalad: None; David N. Glass: None; Roger C. Allen: None; Nico Wulffraat: None; Pierre Quartier: None; Maria Odete E. Hilario: None; Kevin Murray: None; Sheila Oliveira: None; Jordi Anton: None; Anne Hinks: None; Eleftheria Zeggini: None; Carl Langefeld: None; Susan Thompson: None; Jeffrey Chaitow: None; Justine Ellis: None; Davinder Singh: None; Andre Cavalvanti: None; Blanca Bica: None; Flavio

Sztajnbok: None; Hakon Hakonarson: None; Katherine A. Siminovitch: None; Kirsten Minden: None; Peter Haas: None; Tobias Schwarz: None; Daniel L. Kastner: None; Patricia Woo: None.

Author details

¹Arthritis Research UK EU, University of Manchester, Manchester, UK. ²Children's Hospital at Westmead Westmead New South Wales Australia ³Children's Hospital of Philadelphia, Philadelphia, PA, USA. ⁴Childrens Hospital Medical Center, Cincinnati, OH, USA. ⁵Childrens Hospital of PA, Philadelphia, PA, USA. ⁶Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. ⁷Emory Children's Center, Atlanta, GA, USA. ⁸Federal University of Rio de Janiero, Rio de Janiero, Brazil. ⁹Gaslini Hospital, University of Genoa, Genova, Italy. ¹⁰GCRCA, Garmisch, Garmisch, Germany. ¹¹German Rheumatism Research Center, Berlin, Germany. 12 Hacettepe University Faculty of Medicine Ankara, Ankara, Turkey. ¹³Hopital Necker-Enfants Malades, Paris, France. ¹⁴Hospital for Sick Children, Toronto, ON, Canada. ¹⁵Hospital Sant Joan de Déu, Barcelona, Spain. ¹⁶Hospital Universitário Clementino Fraga Filho – UFRJ, Rio De Janeiro, Brazil. ¹⁷Istanbul University Faculty of Medicine, Istanbul, Turkey. ¹⁸Murdoch Children's Research Institute, Parkville, Victoria, Australia. 19NHGRI, NIH, Bethesda, MD, USA. 20Princess Margaret Hospital for Children, Perth, West Australia, Australia. ²¹Ricardo Russo, Buenos Aires, Argentina. ²²Royal Childrens Hospital, Melbourne, Australia. ²³Stanford University Medical Center, San Jose, CA, USA. ²⁴Stanford University Medical Center, Stanford, CA, USA. ²⁵Toronto General Research Institute, Mount Sinai Hospital, Toronto, ON, Canada. ²⁶University College London, London, UK. ²⁷Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil. ²⁸Universidade Federal de São Paulo, Sao Paulo, Brazil. ²⁹Universidade Federal de Sao Paulo, Sao Paulo, Brazil. ³⁰Universidade Federal de Sao Paulo, Sao Paulo, Brazil. 31 University Medical Center Utrecht, Utrecht, Netherlands. ³²University of Utah, Salt Lake City, UT, USA. ³³University of Wuerzburg, Wuerzburg, Germany. ³⁴Wake Forest University Health Sciences, Winston-Salem, NC, USA. 35Wellcome Trust Sanger Institute, Oxford, UK.

Published: 13 July 2012

doi:10.1186/1546-0096-10-S1-A6

Cite this article as: Ombrello *et al.*: Systemic juvenile idiopathic arthritis is associated with *HLA-DRB1* in Europeans and Americans of European descent. *Pediatric Rheumatology* 2012 **10**(Suppl 1):A6.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

