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Abstract
Background  Systemic juvenile idiopathic arthritis (SJIA) is a form of childhood arthritis with clinical features such as 
fever, lymphadenopathy, arthritis, rash, and serositis. It seriously affects the growth and development of children and 
has a high rate of disability and mortality. SJIA may result from genetic, infectious, or autoimmune factors since the 
precise source of the disease is unknown. Our study aims to develop a genetic-based diagnostic model to explore the 
identification of SJIA at the genetic level.

Methods  The gene expression dataset of peripheral blood mononuclear cell (PBMC) samples from SJIA was 
collected from the Gene Expression Omnibus (GEO) database. Then, three GEO datasets (GSE11907-GPL96, GSE8650-
GPL96 and GSE13501) were merged and used as a training dataset, which included 125 SJIA samples and 92 health 
samples. GSE7753 was used as a validation dataset. The limma method was used to screen differentially expressed 
genes (DEGs). Feature selection was performed using Lasso, random forest (RF)-recursive feature elimination (RFE) and 
RF classifier.

Results  We finally identified 4 key genes (ALDH1A1, CEACAM1, YBX3 and SLC6A8) that were essential to distinguish 
SJIA from healthy samples. And we combined the 4 key genes and performed a grid search as well as 10-fold cross-
validation with 5 repetitions to finally identify the RF model with optimal mtry. The mean area under the curve (AUC) 
value for 5-fold cross-validation was greater than 0.95. The model’s performance was then assessed once more using 
the validation dataset, and an AUC value of 0.990 was obtained. All of the above AUC values demonstrated the strong 
robustness of the SJIA diagnostic model.

Conclusions  We successfully developed a new SJIA diagnostic model that can be used for a novel aid in the 
identification of SJIA. In addition, the identification of 4 key genes that may serve as potential biomarkers for SJIA 
provides new insights to further understand the mechanisms of SJIA.

Keywords  Systemic juvenile idiopathic arthritis, Machine learning, Random forest, GEO, Diagnostic model

Establishment and analysis of a novel 
diagnostic model for systemic juvenile 
idiopathic arthritis based on machine learning
Pan Ding1, Yi Du2, Xinyue Jiang3, Huajian Chen4* and Li Huang4*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://orcid.org/0000-0003-4669-3466
http://crossmark.crossref.org/dialog/?doi=10.1186/s12969-023-00949-x&domain=pdf&date_stamp=2024-1-18


Page 2 of 14Ding et al. Pediatric Rheumatology           (2024) 22:18 

Introduction
Juvenile idiopathic arthritis (JIA) is a general term for 
arthritis of unknown etiology that lasts more than 6 
weeks and develops before the age of 16 years. It is one 
of the most common chronic inflammatory rheumatic 
diseases of childhood [1–3]. Systemic juvenile idiopathic 
arthritis (SJIA) is currently classified as a subtype of JIA 
[4]. SJIA is a form of childhood arthritis with clinical 
features [5, 6] such as fever, lymphadenopathy, arthritis, 
rash and serosal disease, and even in the absence of ongo-
ing disease activity, the consequences are not limited to 
joint destruction, but can also affect vision, impact over-
all growth, osteoporosis and underlying cardiovascular 
disease, leading to high rates of disability and mortality 
in children [1, 5, 7–9]. Although SJIA has characteristic 
clinical signs such as fever, a rash associated with fever 
and joint involvement, the early clinical manifestations 
are varied and some of the symptoms can be mild or 
atypical, making recognition and diagnosis difficult. Our 
treatment choices are scarce for this pediatric condi-
tion. Effective identification and intervention can reduce 
and prevent treatment difficulties after the disease has 
become severe.

Due to the complex pathogenesis of SJIA, it has been 
reported that SJIA can be better diagnosed through the 
study of biomarkers [10, 11]. In order to effectively iden-
tify high-risk patients and prevent or lessen the develop-
ment of SJIA, biomarkers can be used to diagnose and 
treat SJIA rather than relying solely on its clinical aspects 
[12]. Significant progress has been achieved in the patho-
physiology and treatment of SJIA in recent years, and big 
data research that combine genomic data and immuno-
phenotypes may reveal new information about SJIA [13]. 
Just in the last few years, biologics have emerged as a 
promising new approach to treating SJIA [14–17]. There-
fore, there is an urgent need for more accurate risk iden-
tification and treatment targeting for SJIA.

The rapid development of transcriptome sequencing 
technology has provided a reliable method to decipher 
the genetic information of diseases. Besides, it also pro-
vides a strong basis for the diagnosis and targeted treat-
ment of various diseases [18–20]. Although some genes 
have been identified as genetic risk markers for SJIA [21, 
22], their individual identification is limited due to the 
complexity and association of the genetic architecture. 
Importantly, the combination of multiple biomarkers to 
identify disease has been shown to significantly improve 
identification. Mathematical models suggest that genetic 
risk genes play important roles in identifying high-risk 
individuals, as well as improving the diagnostic accuracy 
and targeted drug development [23–25].

Peripheral blood mononuclear cell (PBMC) plays a 
critical role in the pathogenesis of SJIA by producing 
pro-inflammatory cytokines, recruiting other immune 

cells to the sites of inflammation, and activating the com-
plement system. So our study is based on PBMC from 
SJIA children and the blood samples are easy to obtain 
and manipulate.

Based on 4 key genes (ALDH1A1, CEACAM1, YBX3 
and SLC6A8) screened in the Gene Expression Omni-
bus (GEO) database, we developed a novel SJIA diag-
nostic model at the transcriptome level. Three methods, 
including least absolute shrinkage and selection operator 
(Lasso), random forest (RF)-recursive feature elimina-
tion (RFE) and RF classifier scores, were used together 
to determine the most important genes for SJIA classifi-
cation. The SJIA diagnostic model based on 4 key genes 
was then built by selecting the RF of the optimal mtry 
on account of the 10-fold cross-validation with 5 rep-
etitions and grid search. We evaluated the performance 
of the diagnostic model using 5-fold cross-validation as 
well as using an external independent validation dataset 
to confirm its accuracy and discriminatory power. We 
also investigated the expression of 4 key genes in three 
other isoforms of JIA (enthesitis-related arthritis, persis-
tent oligoarthritis and rheumatoid factor negative polyar-
thritis) to find similarities and differences. Therefore, our 
study provides new insights into potential biomarkers for 
follow-up studies of SJIA, as well as a new predictive aid 
in terms of predicting SJIA at the genetic level in clinical 
practice.

Materials and methods
Data selection and processing
All datasets for this study were obtained from the GEO 
database, which stores information on the expression 
of genes using high-throughput methods. It was cre-
ated by the National Center for Biotechnology Infor-
mation (NCBI). The study was extensively searched 
through the NCBI database platform using the keyword 
“systemic juvenile idiopathic arthritis”. The type of data-
sets we chose was expression profiling by array, the type 
of organisms was homo sapiens, and the tissue selec-
tion of peripheral blood mononuclear cells (PBMCs). 
We used the MAS5.0 signal intensity as the expression 
level of the gene in order to unify the probe signal inten-
sity. Datasets of MAS5.0 signal strength (GSE11907-
GPL96 and GSE8650-GPL96) were downloaded in the 
Series Matrix File(s) of the respective GEO data. For the 
remaining datasets (GSE7753, GSE13501, GSE20307 and 
GSE21521), we downloaded the original CEL files gener-
ated by Affymetrix from GEO. The raw CEL files were 
processed separately using the MAS 5.0 algorithm imple-
mented in the R package affy (version 1.72.0). Then, we 
converted the probe IDs to gene symbols based on the 
corresponding platform annotation files for the respec-
tive datasets. If multiple probes correspond to the same 
gene symbol, the signal average of multiple probes 
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corresponding to the same gene symbol is calculated as 
the expression level of the corresponding gene. Batch 
correction was performed by applying the ComBat func-
tion in the R package sva (version 3.42.0) as a way to 
eliminate potential multicenter batch effects between dif-
ferent experiments and to output the correction results.

We merged and batch corrected GSE11907-GPL96, 
GSE8650-GPL96 and GSE13501 as the training dataset. 
GSE7753 was used as the external validation dataset. 
Details about six datasets are shown in Supplementary 
Table S1.

Screening for differentially expressed genes (DEGs)
To screen out DEGs, we performed differential expres-
sion analysis in the training dataset using the traditional 
Bayesian approach of the R package limma (version 
3.50.1). False discovery rate (FDR) < 0.05 and log2 fold 
change (log2FC) with absolute value > 1 were used as 
significance criteria for DEGs. We plotted the volcano 
map and the heat map to represent the expression lev-
els of DEGs, which were created using the R packages 
pheatmap (version 1.0.12) and ggplot2 (version 3.3.6), 
respectively.

Analysis of gene ontology and pathway enrichment
DEGs were interpreted using Gene Ontology (GO) and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG). 
In this study, we used the enrichGO and enrichKEGG 
functions of the R package clusterProfiler (version 4.4.4) 
to perform GO and KEGG analyses, respectively, where 
GO analyses include biological processes (BP), cellular 
components (CC), and molecular functions (MF). We 
used bar graphs to show them. In addition, we again 
performed a gene set enrichment analysis (GSEA) using 
the gseKEGG function of the R package clusterProfiler 
to identify pathway differences between the SJIA and 
healthy groups. Pathways with p < 0.05 were considered 
significantly enriched.

Assessing the role of immunomodulation
Since SJIA has historically been associated with the 
immune system, we aimed to explore the potential 
immune relationship between SJIA and healthy samples. 
We used the CIBERSORT algorithm of the R package 
cibersort (version 0.1.0) and its self-contained LM22 gene 
signature to quantify the fraction of each immune cell in 
each sample. CIBERSORT, a deconvolution algorithm, 
allows a reliable quantification of sensitivity and speci-
ficity distinctions and abundance of 22 human immune 
cell phenotypes based on transcriptomic data. The abun-
dance of immune cells was used to explore whether there 
were immune differences between SJIA and healthy 
groups.

Feature selection
To screen for key biomarkers, we applied machine learn-
ing in biology to perform reliable gene-based feature 
selection. First, we used the R package glmnet (version 
4.1-3) for Lasso regression. Lasso regression provides a 
new feature selection algorithm that can solve the cova-
riance problem and filter out representative variable fea-
tures. A refined model is constructed using the Lambda 
value at the minimum binomial deviation as a criterion. 
Second, the RFE method combined with the RF classi-
fier was used for feature selection using the R package 
caret (version 6.0–91), where the control parameters 
were set to a 10-fold cross-validation with 5 repetitions 
as well as accuracy was used as a screening criterion. 
The recursive feature elimination method is to train the 
model on the original features, and each feature gets a 
weight. After that, those features that have the smallest 
absolute value weights are kicked out of the feature set. 
This is recursively done until the number of remaining 
features reaches the desired number of features. Finally, 
we constructed RF models with optimal mtry param-
eters based on candidate genes using the R package caret 
and the R package randomForest (version 4.7–1.1) with 
control parameters set to 10-fold cross-validation with 5 
repetitions. The parameter mtry denotes the number of 
variables randomly sampled in constructing decision tree 
branches in random forest modeling. Using a RF classi-
fier, we assigned importance scores to feature genes, and 
we designated genes with importance scores > 80 as the 
key genes we need.

Establishing an optimal SJIA classification model using 
random forest
Because the simple construction of random forest with 
default parameters could not determine whether the 
model was the best model, we needed to adjust the 
parameters of the random forest model to find the best 
model. The feature genes tested during feature selection 
were initially included to the SJIA random forest predic-
tion model. The best parameter mtry for fitting the data-
set was then found using a grid search strategy with the 
caret and randomForest packages. Immediately after-
wards, the model was optimized on the basis of accuracy 
and overfitting was reduced through multiple rounds of 
training with 10-fold cross-validation with 5 repetitions. 
Finally, the SJIA random forest prediction model with 
optimal parameter mtry was constructed. Finally, the 
SJIA random forest prediction model was built with the 
optimal parameter mtry.

Validating the robustness of the model using cross 
validation
We applied the best model to the training dataset for 
5-fold cross-validation to determine the robustness of 
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the model. Using the R package pROC (version 1.18.0), 
we calculated the area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve. The accu-
racy, Kappa, sensitivity and specificity of the results were 
calculated by the confusionMatrix function of R pack-
age caret. Accuracy is the ratio of the sample size that 
was correctly predicted over all the sample sizes that 
participated in the prediction. Kappa is a metric used 
for consistency testing and can also be used to measure 
the effectiveness of classification. In the range of -1 to 1, 
higher values indicate better model performance. Sensi-
tivity, also known as true-positive rate, is the percentage 
of actual disease correctly diagnosed by that diagnostic 
criterion. Specificity, also known as true-negative rate, 
is the percentage of actual absence of disease correctly 
diagnosed by that diagnostic criterion.

Verification using validation datasets
The validity of the SJIA random forest diagnostic model 
was verified in an external independent validation data-
set (GSE7753). Since there are multiple types of JIA, we 
also explored whether there are dissimilarities among the 
three subtypes of enthesitis-related arthritis, persistent 
oligoarthritis and rheumatoid factor negative polyarthri-
tis for differential analysis of these 4 key genes. The above 
disease datasets were obtained from GSE13501. Details 
of the above three subtypes are shown in Supplementary 
Table S2.

To further explore the breadth of the model. We exam-
ined the predictive power of the model for other diseases, 
such as Systemic Lupus Erythematosus (SLE), S. aureus, 
S. pneumoniae, E. coli and Influenza A. We collected the 
GSE8650-GPL96 dataset for model performance check-
ing of SLE and the GSE6269-GPL96 dataset for model 
performance checking of S. aureus, S. pneumoniae, E. 
coli and Influenza A. Details of the above diseases are 
shown in Supplementary Table S3.

Single-cell RNA-Seq data processing
Single-cell RNA-seq data were obtained from the 
GSE207633 database, from which we obtained patient 
clinical information (from the file “GSE207633_Patient_
Clinical-MetaData.xlsx”), publisher Single-cell cluster-
ing information containing cell name, patient ID, cell 
type, UMAP clustering information, etc. (from the file 
“GSE207633_ScRNASeq-MetaData.xlsx”) and single-cell 
RNA-seq sequencing data (from the file “GSE207633_
RAW.tar”). First, we used R package hdf5r to input the 
single-cell RNA-seq sequencing data extracted from 
“GSE207633_RAW.tar” of 26 patients, and created them 
into Seurat objects using the CreateSeuratObject func-
tion of R package Seurat, and then merged them. Crea-
teSeuratObject function parameters were selected by 
default. Next, we used the NormalizeData function of 

the R package Seurat to divide the read counts for each 
cell by the total counts for that cell, multiply by a scaling 
factor (10,000), and then perform the natural logarithm 
transformation. We then extracted the expression matrix 
of YBX3 in individual cells using the FetchData function 
of the R package Seurat and filtered out the cells that pos-
sessed the single-cell clustering information. Finally, we 
used single-cell clustering information for single-cell map 
visualization as well as mapping YBX3 expression levels 
in individual cells to single-cell map.

Statistical analysis
All statistical analyses were performed with R soft-
ware (version 4.1.3). The two continuous variables 
were compared using the Wilcoxon two-sample test. In 
order to assess the correlation between two continu-
ous variables, the Spearman correlation coefficient was 
used. The AUC is used to test the predictive ability of 
the model, 0.5<AUC<0.7 for poor model performance, 
0.7 ≤ AUC<0.8 for fair model performance, 0.8 ≤ AUC<0.9 
for good model performance, and AUC ≥ 0.9 for excel-
lent model performance. All tests were two-sided, and 
p < 0.05 was considered significant.

Results
Study Design
Step 1: Since GSE7753, GSE13501, GSE20307 and 
GSE21521 are from the same institution (Cincinnati 
Childrens Hospital Medical Center), we extracted the 
sample numbers and performed intersection, and found 
that some of the samples among GSE13501, GSE20307 
and GSE21521 are common to each other, where 
GSE13501 contains all the samples of GSE20307 and 
GSE21521. And GSE7753 is independent of these three 
datasets. Step 2: For the screening of DEGs, three datas-
ets, GSE11907-GPL96, GSE8650-GPL96, and GSE13501, 
were pooled and used as training datasets as well as for 
differential expression analysis. Step 3: We performed 
GO, KEGG and GSEA analyses as well as analysis of 
immune cell infiltration. Step 4: We screened the key 
genes with a 10-fold cross-validation optimized Lasso. 
Step 5: We screened out the key genes with RF-RFE. Step 
6: For the above key genes to be further optimized and 
screened, we used the optimal random forest model to 
score the gene importance and screen out 4 key genes. 
Step 7: Optimal random forest models were developed 
based on the key genes. Step 8: Further model valida-
tion was performed using the GSE7753 dataset. Figure 1 
depicts the entire study flow.

Identification of DEGs
We performed differential expression analysis to screen 
DEGs in the merged training dataset, where there were 
125 SJIA samples and 92 healthy samples in the training 
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dataset. Using the significance criteria for DEGs, we 
identified 150 DEGs associated with SJIA, including 14 
down-regulated genes and 136 up-regulated genes, and 
used a volcano plot to depict the expression status of all 
DEGs (Fig. 2A). By heat map, we likewise found that the 
expression levels of DEGs in SJIA, compared to healthy 
samples, were significantly different (Fig. 2B).

Enrichment analysis
Then, enrichment analyses were performed for 
these DEGs. As shown by the results of GO analysis 
(Fig. 3A), DEGs were significantly enriched in immune 
and erythrocyte-related biological processes, such as 
neutrophil activation, humoral immune response and 
erythrocyte development. According to the results 
of KEGG analysis (Fig.  3B), immune-related disease 
pathways, IL-17 signaling pathway, NOD-like receptor 

signaling pathway, Porphyrin metabolism and Hema-
topoietic cell lineage were mainly enriched. By using 
GSEA, we further investigated the changes in pathways 
between SJIA and healthy samples (Fig.  3C-F), which 
revealed that SJIA patients were enriched for many 
metabolism- and immune-related pathways as well 
as two pathways associated to cell death (Mitophagy 
and Ferroptosis). Finally, we explored the immune dif-
ferences between SJIA and healthy samples (Fig.  3G), 
and the results showed that compared with healthy 
samples, B cells naive, T cells CD4 naive, T cells CD4 
memory resting, T cells gamma delta and NK cells 
in SJIA patients resting showed a significant down-
regulation trend, while Plasma cells, T cells follicular 
helper, T cells regulatory (Tregs), Monocytes, Macro-
phages M0, Macrophages M1 and Neutrophils showed 
a significant up-regulation trend.

Fig. 1  The flow chart of this study
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Screening for key genes
To obtain the key genes, we first entered all 150 DEGs 
into Lasso regression and performed 10 cross-vali-
dations. Based on the Lambda value at the minimum 
Binomial Deviance as a criterion (Fig. 4A-B), we iden-
tified 28 candidate genes by compressing the feature 
variables. Secondly, we utilized the RF-RFE method 
for re-feature selection, as shown in Fig.  4C, and it 
could be found that the model had the highest accu-
racy with 24 candidate genes. Finally, we incorporated 
24 candidate genes into the random forest classifier 
and repeated 10-fold cross-validation 5 times to obtain 
the best model. To reduce the number of feature vari-
ables while preserving good predictive power, we iden-
tified 4 genes with importance scores > 80 as the final 
key genes for further analysis. As shown in Fig. 4D, the 
key genes include ALDH1A1, CEACAM1, YBX3 and 
SLC6A8.

Construction and validation of the SJIA random forest 
model
We incorporated ALDH1A1, CEACAM1, YBX3 and 
SLC6A8 into the random forest classifier. To opti-
mize the performance of the model, we performed 
a grid search for the mtry parameters and calcu-
lated the model accuracy for each mtry using 10-fold 
cross-validation with 5 repetitions. Finally, the high-
est accuracy of the random forest prediction model 
was locked at mtry = 2, and the optimal random for-
est prediction model was obtained. Subsequently, we 

performed a 5-fold cross-validation robustness test 
on the model, and each result was represented by a 
ROC curve (Fig.  5A-E), while the results for accu-
racy, Kappa, sensitivity, and specificity were shown in 
Table 1. The average AUC of the five cross-validation 
results was greater than 0.95, which proved the valid-
ity and robustness of the model. In the validation data-
set, the ROC curve analysis estimated an AUC value 
of 0.990 (Fig.  5F), and the accuracy, Kappa, sensitiv-
ity and specificity of the confusion matrix estimation 
were 0.936, 0.864, 0.941 and 0.933, respectively, indi-
cating the robustness of the model in predicting SJIA. 
Immediately after, we validated the predictive ability 
of the model for SLE, S. aureus, S. pneumoniae, E. coli 
and Influenza A. We found that their AUC values were 
0.793, 0.834, 0.795, 0.913 and 0.755, respectively (Sup-
plementary Table S4). It had a good predictive ability 
in E. coli, and the AUC of the other four diseases was 
less than 0.85, and the model was especially poor in 
predicting Influenza A. The model had a good predic-
tive ability in E. coli. However, in the end, the model 
was the most effective in predicting SJIA.

Differential trends of the 4 key genes in the other three 
subtypes
We further investigated 4 key genes, ALDH1A1, 
CEACAM1, YBX3 and SLC6A8, for differential trends 
among the 4 subtypes of JIA (Fig. 6A-D). It was found 
that ALDH1A1 showed a significant trend of down-
regulation in all subtypes of JIA. CEACAM1 showed 

Fig. 2  Differential genes. (A) Volcano map with 22 DEGs, orange dots indicate up-regulated genes, black dots indicate non-differentiated genes, and blue 
dots indicate down-regulated genes. (B) Heat map of the expression of 150 DEGs.
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Fig. 3  Enrichment analysis and immune cell infiltration analysis. (A) Histogram of GO enrichment analysis. (B) Histogram of KEGG enrichment analysis. 
(C-D) About pathway-related GSEA. (G) Violin plots of the 22 immune cell abundance differences analyzed between SJIA and healthy groups. (*p < 0.05; 
**p < 0.01; ***p < 0.001)
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significant overexpression only in SJIA and persistent 
oligoarthritis. YBX3 and SLC6A8 showed significant 
overexpression in SJIA, while in the other three sub-
types, neither gene showed differences compared to 
healthy individuals. Immediately after, in SJIA, we 
found by correlation analysis of 4 genes (Supplemen-
tary Fig. 1A) that there was a close association between 
the 4 genes, and we also found a strong positive corre-
lation between YBX3 and SLC6A8 with a correlation 
coefficient of 0.92(Supplementary Fig. 1B).

Analysis of GSEA, clinical phenotype and association with 
immune cells for 4 key genes
Our results from the GESA study of four key genes 
(Supplementary Table S5) showed that patients with 
low expression of ALDH1A1 were associated with cell 
cycle, neuroactive ligand-receptor interaction, ECM-
receptor interaction, mucin type O-glycan biosyn-
thesis, and glycine, serine and threonine metabolism. 
Patients with high CEACAM1 expression are asso-
ciated with many immune-related pathways. Then, 

Patients with high SLC6A8 expression were associated 
with Glycine, serine and threonine metabolism, Por-
phyrin metabolism and Complement and coagulation 
cascades. The pathways associated with high YBX3 
and SLC6A8 patients were very similar, further dem-
onstrating a strong association between YBX3 and 
SLC6A8. In addition, patients with high CEACAM1 
expression, high YBX3 expression, and high SLC6A8 
expression all showed a strong connection with 
mitophagy, whereas patients with high YBX3 expres-
sion and high SLC6A8 expression showed a strong 
association with ferroptosis.

We used the clinical phenotypes provided by the 
GSE8650 to investigate the association between the 
four key genes and the clinical phenotypes. The differ-
ences between the four key genes across clinical phe-
notypes are illustrated by box plots (Supplementary 
Figure S2 A-D). In ALDH1A1, the lower the expres-
sion, the more likely it was that arthritis was accompa-
nied by fever compared to asymptomatic patients. In 
CEACAM1, YBX3 and SLC6A8, all three genes were 

Fig. 4  Feature selection. (A) The lasso regression curve of 28 DEGs. (B) The 10-fold cross-validation parameter (λ) options. (C) The 10-fold cross-validation 
of accuracy of signature gene combination of RF-RFE. (D) Gene importance scores for RF classifier
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found to be overexpressed in patients with arthritis 
associated with fever.

In a further analysis of the correlation between the 
four key genes and immune cells, we used the spear-
man method for correlation analysis (Supplementary 
Figure S2 E) and showed that ALDH1A1 was posi-
tively correlated with T cells CD4 memory resting, 
Dendritic cells resting and negatively correlated with 
T cells CD4 memory activated, Neutrophils. In con-
trast, CEACAM1, YBX3 and SLC6A8 were found to 
be negatively correlated with T cell CD4 memory rest-
ing and positively correlated with T cell CD4 memory 
activated, Neutrophils.

Discussion
Arthritis in SJIA is accompanied by clinical features 
such as fever, lymphadenopathy, rash, and serosal 
disease, and it develops rapidly and is prone to dis-
ability [1]. In order to enhance and protect the qual-
ity of survival for children with SJIA, good prediction 
and identification are essential [9]. However, the exact 
mechanism by which SJIA occurs is still unknown 
[26], and it is not a classic autoimmune disease, it 
has systemic inflammatory properties [6]. Since there 
are currently no clear diagnostic criteria for SJIA, the 
diagnosis is typically made using a combination of 
clinical symptoms, serological tests, and imaging stud-
ies. As a rare disease [27, 28], timely judgments are 
difficult to made in clinical diagnosis. On the genetic 
side, exploratory studies on biomarkers of SJIA are still 
of great value to go deeper. Therefore, it is essential to 
identify biomarkers that have a strong correlation with 
SJIA.

In our study, we used transcriptomic data from 
PBMC and built a SJIA diagnostic model based on 
the random forest algorithm as a way to distinguish 
between children with SJIA and healthy children. With 
the rapid development of bioinformatics, the evidence 

Table 1  The results of 5-fold cross-validation
AUC Accuracy Kappa Sensitivity Specificity

Cross validation 1 0.980 0.907 0.809 0.920 0.889
Cross validation 2 0.974 0.932 0.858 1.000 0.842
Cross validation 3 0.993 0.977 0.953 0.960 1.000
Cross validation 4 0.987 0.930 0.858 0.920 0.944
Cross validation 5 0.981 0.909 0.812 0.960 0.842

Fig. 5  The ROC curve results for 5-fold cross-validation (A-E) and validation (F) dataset
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for the classification of diseases such as SJIA can be 
supported by strong evidence. To identify differential 
genes in SJIA, we first combined three GEO datasets 
(GSE11907-GPL96, GSE8650-GPL96 and GSE13501) 
as a training dataset, and then performed differen-
tial gene expression analysis. GO, KEGG and GSEA 
enrichment analyses were then performed. Based on 
GO and KEGG analyses, DEGs were associated with 
a large number of biological processes and pathways, 
reflecting the dynamic and complex nature of the 
pathogenesis. Many previous studies have supported 
our findings. Although children with SJIA and other 
JIA have long-term joint damage, the main differ-
ence lies in the fact that it can show autoinflammatory 
characteristics, which is closely related to autoimmu-
nity. Brown et al. [29] found that neutrophils in chil-
dren with SJIA exhibited sustained pro-inflammatory 
activation regardless of disease activity.IL-17, a pro-
inflammatory cytokine secreted by Th17 cells, is also 
critical to study in SJIA. Feng et al. [30] study found 
that IL-17 levels were increased in both the active and 
inactive phases of SJIA compared to controls and were 
significantly higher in the active phase compared to 
the inactive phase. Omoyinmi et al. [31] reported a sig-
nificant increase in the proportion of IL-17-producing 
CD4 + T cells in the peripheral blood of SJIA patients. 
Our study also found that differential genes associated 
with SJIA are linked to several metabolism-related 
pathways, including “Porphyrin metabolism”, “Argi-
nine and proline metabolism” and “Glycine, serine 
and threonine metabolism”. GSEA analysis is superior 

to KEGG analysis and provides a better understand-
ing of the biological changes between groups. The 
aggregation of many immune-related pathways in SJIA 
patients suggests that the pathogenesis of SJIA patients 
is associated with immune abnormalities, which has 
become a consensus among SJIA researchers. Regard-
ing metabolism-related pathways, these pathways were 
positively correlated with SJIA, again suggesting that 
the pathogenesis of SJIA is likely to be closely related 
to metabolic dysregulation. We also found two cell 
death modalities, mitophagy and ferroptosis, to be sig-
nificantly enriched in SJIA. Mitophagy is an important 
form of autophagy used to selectively remove dysfunc-
tional or redundant mitochondria, and there is grow-
ing evidence of a close relationship between mitophagy 
and inflammation and autoimmunity [32–34]. Because 
most of the relevant studies are from autophagy-
mitophagy-inhibition models, it should be noted that 
excessive activation of mitophagy may be detrimental 
to immune cell homeostasis, as Jin et al. [35] found 
that excessive activation of mitophagy performed in 
a mouse model impairs progenitor-phase red lineage 
differentiation and leads to depletion of red lineage 
cells. Therefore, the relationship between regulation 
of mitophagy and inflammation and immunity cannot 
be conclusively established, and multiple methods to 
assess activity of mitophagy are still needed to gain a 
more thorough understanding of pathways of mitoph-
agy in autoimmune diseases [32]. Our study found that 
mitophagy was enriched in children with SJIA, which 
may provide new clues to future researchers about the 

Fig. 6  Differential expression of 4 key genes in SJIA, enthesitis-related arthritis, persistent oligoarthritis and rheumatoid factor negative polyarthritis
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relationship between SJIA and mitophagy. Ferroptosis 
is a regulated mode of cell death triggered by a combi-
nation of iron toxicity, lipid peroxidation, and plasma 
membrane damage [36]. Recent studies have identi-
fied an important role for this mode of cell death in 
metabolism and immunity [37, 38], while it has been 
less studied in SJIA.

We finally screened 4 key genes, namely ALDH1A1, 
CEACAM1, YBX3 and SLC6A8, by three feature 
screening methods (Lasso, RF-RFE and RF clas-
sifier scoring). Acetaldehyde dehydrogenase 1A1 
(ALDH1A1) has a key role in tumor immunity. Liu 
et al. [39] found that increased ALDH1A1 activity in 
breast cancer led to expansion of myeloid-derived 
suppressor cells and immunosuppression, and also 
found that the ALDH1A1 inhibitor disulfiram and 
the chemotherapeutic agent gemcitabine synergisti-
cally inhibited breast tumor growth and tumorigenesis 
by clearing ALDH + tumor-initiating cells and acti-
vating T-cell immunity. Cui et al. [40] reported that 
ALDH1A1 expression in thyroid cancer was negatively 
correlated with immunostimulatory genes, major his-
tocompatibility complexes, chemokines and recep-
tors. The above two studies indicate that ALDH1A1 
has a close relationship with immunity, but ALDH1A1 
has been less studied in autoimmune diseases. In our 
study, we found that ALDH1A1 expression was low 
in children with SJIA compared to healthy children 
and that ALDH1A1 was positively correlated with T 
cell CD4 memory resting status and negatively corre-
lated with T cell CD4 memory activation, consistent 
with previous reports that ALDH1A1 has an immu-
nosuppressive function. A recent study reported that 
ALDH1A1 is associated with systemic sclerosis and 
affects the pentose phosphate pathway, oxidative stress 
and lipolysis [41], suggesting a relationship between 
ALDH1A1 and autoimmune diseases. Carcinoembry-
onic antigen cell adhesion molecule 1 (CEACAM1) 
plays an important role in regulating immune 
responses associated with infection, inflammation, and 
cancer. Previous studies have shown that CEACAM1 is 
a heterophile ligand of TIM-3, mediating T cell inhibi-
tion. The interaction between CEACAM1 and TIM-3 
plays a crucial role in regulating autoimmunity and 
anti-tumor immunity [42, 43]. Our study found that 
CEACAM1 was highly expressed in children with SJIA 
and that patients with high CEACAM1 expression 
were associated with many immune-related pathways. 
CEACAM1 expression was positively correlated with 
plasma cells, T cells CD4 memory activation and neu-
trophils, suggesting that CEACAM1 may play a role 
in immune activation in SJIA. Y-box binding protein 3 
(YBX3) is an RNA-binding protein that regulates dif-
ferent sets of mRNAs, including mRNA abundance, 

through different mechanisms, thus becoming a key 
regulator at the amino acid level [44]. It is considered 
a key molecule that links the genetic risk factors for 
Behcet syndrome to the pathogenesis of the disease 
[45]. Sun et al. [46] identified lncRNA-HEIH/YBX3 as 
a pan-cancer immunogenic system that can be used as 
a diagnostic and prognostic biomarker and therapeu-
tic target. YBX3 is less studied at present, especially in 
autoimmune diseases. We found that YBX3 was sig-
nificantly expressed in the vast majority of immune 
cells by single-cell level analysis of PMBC from 21 SJIA 
patients and 5 healthy individuals (Supplementary Fig-
ure S3). Alteration of macrophage-mediated immune 
response in vivo by depletion of intracellular cre-
atine through ablation of creatine transporter protein 
(SLC6A8) [47]. SLC6A8 regulates the energy balance 
of intestinal epithelial cells, thereby regulating intes-
tinal epithelial integrity and barrier function, which 
leads to intestinal barrier dysfunction in patients 
with inflammatory bowel disease [48]. We found that 
YBX3 and SLC6A8 were highly expressed in SJIA and 
that there was a strong correlation between YBX3 and 
SLC6A8. The results of GSEA analysis, clinical phe-
notype analysis and correlation analysis with immune 
cells for these two genes showed strong similarity. 
In the GSEA study, high expression was found to be 
closely associated with Complement and coagulation 
cascades. In a correlation analysis, they were found 
to be negatively correlated with T cells CD4 memory 
resting state and positively correlated with T cells CD4 
memory activation state, and these two genes may play 
a key role in the regulation of the immune system in 
SJIA. Currently, these 4 genes have not been studied 
in SJIA. In this study, we performed a key gene screen 
using machine learning techniques with public genetic 
databases, and we suggest that these 4 genes may be 
key biomarkers linking genetic risk factors for SJIA to 
disease pathogenesis.

In the study, we analysed three other subtypes of 
JIA (enthesitis-related arthritis, persistent oligoarthri-
tis and rheumatoid factor negative polyarthritis) in 
relation to the expression of 4 key genes. ALDH1A1 
showed a significant trend of low expression in all four 
subtypes of patients compared to healthy individuals, 
suggesting that ALDH1A1 plays a key role in JIA. In 
contrast, CEACAM1 showed high expression only in 
SJIA and persistent oligoarthritis patients, suggesting 
a potentially identical pathway between SJIA and per-
sistent oligoarthritis. In contrast, YBX3 and SLC6A8 
were only highly expressed in SJIA, with no differ-
ence in any of the other three subtypes, indicating the 
specificity of these two genes in SJIA compared to the 
other three subtypes.The highlights of our study are 
the innovative combination and application of Lasso, 
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RF-RFE and Random Forest classifier scoring methods 
to SJIA and the excellent results generated in terms 
of predictive power in SJIA. Three feature selection 
methods, such as Lasso, RF-RFE and random for-
est classifier scoring, are each capable of being used 
as methods to identify key biomarkers and have been 
widely used in biology [49, 50]. Previously, no studies 
have used machine learning to construct SJIA diagnos-
tic models based on gene sequencing.

We performed a 5-fold cross-validation to prevent 
the model from overfitting, and obtained an AUC 
greater than 0.95 and an accuracy greater than 0.9 
in each case, indicating the robustness of the model. 
Following immediately, we performed another vali-
dation of the robustness and generalization ability 
of the model using an external independent dataset 
(GSE7753), and the results showed an AUC of 0.990, 
again demonstrating the strong robustness of our 
model. In particular, the sample in GSE7753 included 
untreated children with new-onset SJIA as well as 
healthy children. The above results indicate that the 
model is well suited for the identification and predic-
tion of SJIA.

In addition, we explored whether there were simi-
larities and differences among the 4 subtypes (SJIA, 
enthesitis-related arthritis, persistent oligoarthri-
tis and rheumatoid factor negative polyarthritis) of 
these 4 key genes. The results revealed that ALDH1A1 
showed downregulation in all 4 subtypes, and 
ALDH1A1 may have a key role as a biomarker of dis-
ease onset in the same 4 subtypes. YBX3 and SLC6A8 
were only upregulated in SJIA, with no significant up 
and down expression trends in the remaining three 
subtypes, which may indicate that these two genes are 
the key genes that cause SJIA to have different clini-
cal characteristics from the three subtypes. And at the 
same time YBX3 and SLC6A8 have a very strong cor-
relation in SJIA.

Using the transcriptome level, we investigated the 
validity and reliability of machine learning in SJIA 
diagnostic prediction. In light of this, we have suc-
cessfully developed a new SJIA disease risk prediction 
model that holds promise for use as a new SJIA diag-
nostic prediction tool to aid in the diagnosis of SJIA. 
Furthermore, the 4 key genes we finally obtained pro-
vided some new clues for the subsequent SJIA study.

Nevertheless, our study has some limitations. (1) 
Although we merged multiple datasets into a larger 
dataset to build the model, it still did not satisfy the 
number of data samples required for machine learning. 
If conditions allow, we can include more research data 
in future training datasets. (2) Overfitting in model 
construction is objective and difficult to eliminate, but 
we minimized the overfitting problem by using a 5-fold 

cross-validation approach in the modeling process. 
Checking for overfitting is not a complete solution, but 
it is still very helpful. However, this means that even 
if we get good model results on the validation data-
set, there is no shortage of different data with noise in 
reality, and the actual generalization ability may not 
be good. (3) The model has not been tested in practi-
cal applications in predicting SJIA patients. Therefore, 
more research data will be needed in the future to test 
the robustness and generalization ability of the model.

Conclusions
In conclusion, we explored and identified the key bio-
markers ALDH1A1, CEACAM1, YBX3 and SLC6A8, 
which are significantly associated with SJIA, for 
the first time by using machine learning techniques 
through an in-depth study of the SJIA datasets in the 
GEO database, and the combination of these 4 genes 
can effectively construct a random forest-based SJIA 
diagnostic model as well as a powerful prediction of 
SJIA.
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