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Abstract 

Background:  In comparison with the general population, adolescents with juvenile idiopathic arthritis (JIA) are 
at higher risk for morbidity and mortality. However, limited evidence is available about this condition’s underlying 
metabolic profile in adolescents with JIA relative to healthy controls. In this untargeted, cross-sectional metabolomics 
study, we explore the plasma metabolites in this population.

Methods:  A sample of 20 adolescents with JIA and 20 controls aged 13–17 years were recruited to complete surveys, 
provide medical histories and biospecimens, and undergo assessments. Fasting morning plasma samples were pro-
cessed with liquid chromatography–mass spectrometry. Data were centered, scaled, and analyzed using generalized 
linear models accounting for age, sex, and medications (p-values adjusted for multiple comparisons using the Holm 
method). Spearman’s correlations were used to evaluate relationships among metabolites, time since diagnosis, and 
disease severity.

Results:  Of 72 metabolites identified in the samples, 55 were common to both groups. After adjustments, 6 metabo-
lites remained significantly different between groups. Alpha-glucose, alpha-ketoglutarate, serine, and N-acetylas-
partate were significantly lower in the JIA group than in controls; glycine and cystine were higher. Seven additional 
metabolites were detected only in the JIA group; 10 additional metabolites were detected only in the control group. 
Metabolites were unrelated to disease severity or time since diagnosis.

Conclusions:  The metabolic signature of adolescents with JIA relative to controls reflects a disruption in oxidative 
stress; neurological health; and amino acid, caffeine, and energy metabolism pathways. Serine and N-acetylaspartate 
were promising potential biomarkers, and their metabolic pathways are linked to both JIA and cardiovascular disease 
risk. The pathways may be a source of new diagnostic, treatment, or prevention options. This study’s findings contrib-
ute new knowledge for systems biology and precision health approaches to JIA research. Further research is war-
ranted to confirm these findings in a larger sample.
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Background
Juvenile idiopathic arthritis (JIA) is defined as persistent 
joint swelling (≥6 weeks) often accompanied by pain, 
heat, limited range of motion, erythema, or loss of use, 
with an onset prior to age 16 years [1–3]. It is the most 
common rheumatic disease in adolescents [1]. Although 
JIA’s exact etiology is unknown, it is thought to arise in 
genetically susceptible individuals who are influenced by 
environmental factors [1–3]. Across regions internation-
ally, JIA’s incidence ranges from 1 to 22 per 100,000 chil-
dren under age 18 years, and its prevalence ranges from 
7 to 400 per 100,000 children [1, 4]. Among adolescents 
with all types of JIA, morbidity and mortality are higher 
than in the general population [5–8]. As a result, there is 
a need for a better understanding of JIA pathogenesis to 
improve prevention, diagnosis, and treatment options.

Metabolomics offers a strategy to study the metabolic 
dysfunction that precedes clinically detectable disease 
onset [9–11]. Untargeted metabolomics is the compre-
hensive study of metabolic byproducts present in bod-
ily fluids or tissues, usually in comparison with a control 
group [10]. In preclinical and clinical studies of rheuma-
toid arthritis, metabolomics analysis of serum, plasma, 
urine, and synovial fluid has identified diagnostic bio-
markers and indicators of treatment responsiveness [10, 
12], but this is only beginning to be explored in adoles-
cents with JIA. The purpose of the present untargeted 
metabolomics study is to describe the metabolic profile 
in the plasma of adolescents aged 13–17 years with JIA in 
comparison with a control group of healthy adolescents.

Methods
This was a cross-sectional study to compare adolescents 
aged 13–17 years with JIA (n = 20) and age, sex, race, eth-
nicity, and body mass index (BMI) percentile matched 
healthy controls (n  = 20). Participants were recruited 
from the greater Austin, Texas metropolitan area, which 
comprises over 1.8 million people. Central Texas’s racial 
and ethnic demographic composition is 48.9% non-His-
panic White; 33.6% Hispanic; 8.9% Black; and 8.7% Pacific 
Islander, Asian, or American Indian [13]. JIA participants 
were recruited through pediatric rheumatologist refer-
rals, emailed flyers, in person, and social media. Control 
group participants were recruited via flyer distribution 
throughout the community and referral from other par-
ticipants. The study received ethics approval from The 
University of Texas at Austin Institutional Review Board.

Participants were enrolled from August 2018 to Octo-
ber 2019. Adolescents were included in the JIA group 
if they had a prior clinical diagnosis of JIA from the 
patient’s pediatric rheumatologist and were able to com-
plete surveys in English or Spanish. Participants in the 
control group were healthy and without a rheumatologic 
disease diagnosis. Participants were excluded from either 
group if they were pregnant via self-report and confirmed 
with urine tests after biospecimen collection. Study visits 
took place at the pediatric rheumatology clinic and were 
scheduled to begin in the morning when participants had 
fasted for at least 8 h to standardize the time of day for 
biospecimen collection. Participants first completed sur-
veys, and the study team then collected anthropometric 
measures (height, weight), blood pressure, and biospeci-
mens (blood and urine).

Data collected included demographics, JIA disease 
activity and history (JIA subtype, rheumatoid factor, phy-
sician’s global assessment of disease activity [14, 15], time 
since diagnosis, age at diagnosis, and a pain visual analog 
scale from 0 to 10) [16]; medications taken within the 
7 days prior to the study visit, and BMI percentile. Blood 
was collected by venipuncture by experienced pediatric 
phlebotomists or nurses using a standardized protocol. 
To account for potential confounding effects of dietary 
intake, detailed dietary data were collected via a 3-day 
food diary for the 3 days prior to the study visit and were 
analyzed using 2019 Nutrition Data System for Research 
software [17, 18].

Plasma sample preparation and metabolomics analysis
Plasma was separated from whole blood using centrifuga-
tion, then the plasma was immediately flash frozen using 
liquid nitrogen and stored at − 80 °C to halt metabolism 
[19, 20]. After completion of recruitment and patient 
sample collection, frozen plasma was thawed on ice and 
filtered by ultracentrifugation in Nanosep 3 K Omega 
Membrane filters (Pall Corporation, Port Washington, 
NY) at 4 °C [20].

The plasma filtrate was diluted in high-performance 
liquid chromatography grade water at a ratio of 1:500 and 
transferred to liquid chromatography–mass spectrom-
etry vials for analysis. Samples were spiked at a ratio of 
1:10 with deuterated internal standards to track system 
performance [21–23]. Briefly, polar metabolite analysis 
was conducted on a Vanquish Flex ultra-performance liq-
uid chromatography system (Fisher Scientific, San Jose, 
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CA). Mobile phases of (A) water and 0.2% formic acid 
and (B) methanol were used with a Kinetex 2.6 μm C18 
100 Å, 150 × 2.1 mm high-performance liquid chroma-
tography column (Phenomenex, Torrance, CA) at a flow 
rate of 150 μL/min at an A/B ratio of 98/2 for 4 min, 20/80 
for 10 min, 2/98 for 1 min, held at this ratio for 6 min, and 
finally 98/2 for 14 min. Sample injection volume was 5 μL. 
In tandem with the Vanquish, the Q Exactive Hybrid 
Quadrupole Orbitrap mass spectrometer (Thermo Sci-
entific, Bremen, Germany), equipped with electrospray 
ionization, was used to acquire untargeted polar metabo-
lite data in positive/negative ion switching mode. Pooled 
quality control samples were acquired every 6 samples 
and were used to monitor instrument stability for back-
ground subtraction. Acquisition parameters were set 
as follows: spray voltage, 3.5 kV; capillary temperature, 
320 °C; sheath gas, 45 (arbitrary units); auxiliary gas, 10 
(arbitrary units); m/z range, 70–1000 (HILIC), 50–750 
(RP); data acquisition, centroid mode; microscans, 10; 
AGC target, 1e6; maximum injection time, 200 millisec-
onds; mass resolution, 70,000 FWHM at m/z 200.

Raw data were imported into SIEVE 2.2.0 SP2 soft-
ware (Thermo Scientific, San Jose, CA) to conduct peak 
picking and spectral alignment. Integrated peak area, 
mass to charge ratio, and retention time were exported 
from SIEVE. Metabolite identification from the SIEVE 
export was achieved by matching mass to charge ratio 
and retention time to a library of compounds using an in-
house MATLAB script (IROA 300, Mass Spectrometry 
Metabolite Library of Standards; IROA Technologies, Sea 
Girt, NJ). Peaks were excluded from further analysis if 
the coefficient of variance exceeded 0.25 as calculated by 
integrated peak areas of repeat injects of a pooled qual-
ity control. Probabilistic quotient normalization was con-
ducted to normalize integrated peak area [24].

Data analysis
To test for differences in metabolite levels between JIA 
cases and controls, the data were centered, scaled, and 
fit using linear regression in R v4.1.0 [25]. The R code 
is available in Supplementary File  1. Significance levels 
(p-values) were adjusted for multiple comparisons using 
the Holm method [26]. Models were fit as follows for 
each metabolite:

where β0 is the intercept term and β1to β5 are the linear 
coefficients.

Correlation coefficients between metabolites and dis-
ease activity, as well as between metabolites and time 
since diagnosis, were estimated using Spearman’s rho, 

metabolitei ∼ �0 + �1Group + �2Age + �3Sex + �4MedsRheum + �5MedsNonrheum,

and associated p-values were also adjusted for multiple 
comparisons using the Holm method [27]. Although we 
were prepared to train multivariable models using partial 
least squares discriminant analysis, this was unnecessary 
due to mass univariate testing results. Metaboanalyst 
5.0 enrichment analysis was used to evaluate the top 25 
Kyoto Encyclopedia of Genes and Genomes metabolic 
pathways implicated in the results [28, 29]. Differences 
between groups for sample characteristics were evalu-
ated using chi square and two-tailed t-tests for independ-
ent samples. A sensitivity analysis was run to identify 
any metabolites significantly different between RF posi-
tive and RF negative JIA as a potential confounder. Since 
there were no previously available studies from which to 
determine effect sizes, the sample size was based on the 
aim of providing initial evidence to be confirmed with 
future research.

Results
Forty participants (n = 20 with JIA; n = 20 controls) were 
enrolled in the study. However, one JIA participant’s 
data was excluded prior to data analysis due to a previ-
ously unidentified comorbidity. Thus, the final sample 
was N  = 39 participants. Participants’ characteristics 
are detailed in Table 1. The overall sample ranged in age 
from 13 to 17 years, with a mean age of 14.6 ± 1.5. Self-
reported demographics indicate that the sample was 69% 
female, 33% Hispanic or Latino ethnicity, 8% Black, and 
92% White. We were unable to detect a statistically sig-
nificant difference between the JIA and control groups’ 
demographics (p  < 0.05) for age, sex, race, or ethnicity. 
Dietary micro- and macronutrient intake did not differ 
between the JIA group and controls.

JIA disease history
The JIA group’s mean age at diagnosis was 7.5 ± 5.2 years, 
with mean time since diagnosis at 7.5 ± 5.1 years. Their 
mean pain score was 2 ± 2 on the visual analog scale from 
0 (no pain) to 10 (worst pain) [16]. JIA subtypes were 
42.1% idiopathic, 26.3% polyarticular, 21.1% undifferen-
tiated, 5.3% psoriatic, and 5.3% systemic. Two patients 
were rheumatoid factor positive and had the highest rat-
ing on the physician’s global assessment of disease activ-
ity scale [14, 15], with a mean score of 9 out of 10. Eight 

were in inactive disease based on a disease activity score 
of ≤1 and clinical evaluation by the pediatric rheumatol-
ogist [29, 30]. Eleven were in active disease at the time 
of the study visit; their mean score was 5.1 ± 3.1. Most of 
the sample fell within the normal body weight percentile 
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for height, age, and sex. Fifteen percent of those in the 
control group and 21% of the JIA group were overweight 
or obese (BMI percentile > 85).

Medications, vitamins, and supplements
Adolescents in both groups reported taking medica-
tions within the past 7 days (Supplementary Table 1). Our 
generalized linear model analysis controlled for medica-
tions as a covariate. Because the count in each category 
of medications was small, and because adolescents in 
both groups reported taking both immunomodulators 
and non-immunomodulators, medications were dichoto-
mized and coded as either immunosuppressants/modu-
lators (i.e., biologic and nonbiologic disease-modifying 
anti-rheumatic drugs, corticosteroids, and nonsteroidal 
anti-inflammatory drugs) or non-immunosuppressants/
modulators (i.e., vitamins, hormones, or seasonal allergy 
medications).

Metabolites
A total of 72 metabolites were identified in the sam-
ples. Sixty-five metabolites were identified in the con-
trol group and 62 in the JIA group (Table  3). Fifty-five 
of the identified metabolites were common to both 
groups. Ten metabolites were found in the control 
group that were not detected in the JIA group samples: 
2-hydroxypyridine, 3-aminoisobutanoate, 3-ureidopro-
pionate, 5-aminolevulinic acid, isocitric acid, glutamic 
acid, lysine, acetyl-alanine, pyridoxal, taurine. Seven 
metabolites were unique to the JIA group and unde-
tected in the control group: theobromine, acetyl-lysine, 

N-acetyl-phenylalanine, ornithine, glutarate, cytidine 
monophosphate (CMP), and methylglutaric acid. No 
metabolites were significantly related to disease activity 
or time since diagnosis.

After controlling for age, sex, and medications, 6 of the 
metabolites present in samples from both groups were 
significantly different (Holm-adjusted p  < 0.05) between 
groups: alpha-glucose, alpha-ketoglutarate, glycine, cys-
tine, serine, and N-acetylaspartate (NAA). The latter two 
showed perfect separation between the JIA and control 
groups (Fig.  1, Table  2). The total separation between 
groups in serine and NAA obviated the use of multivari-
ate dimensionality reduction analysis or a multivariable 
model. RF was not found to be a confounder after the 
sensitivity analysis.

Figure 2 shows the MetaboAnalyst 5.0 pathway enrich-
ment analysis used to evaluate the metabolic pathways 
most implicated in the results. Visualizations of our find-
ings in relation to the citric acid cycle, which is central to 
energy metabolism, and the glyoxylate and dicarboxylate 
metabolic pathway (the metabolic pathway with the most 
metabolites represented in our sample) are available in 
Supplementary Figs. 1 and 2, respectively.

Discussion
This study is the first to detail the metabolites, identified 
using untargeted metabolomics methodology, that are 
significantly different in adolescents with JIA in compari-
son with healthy controls. The metabolites were unre-
lated to JIA disease activity or time since diagnosis in our 
sample. Serine and NAA were promising differentiators 
between plasma samples of the JIA and control groups. 

Table 1  Demographics and Clinical Characteristics of Study Participants by Group: Adolescents Aged 13–17 Years with Juvenile 
Idiopathic Arthritis versus Healthy Controls

*Significant at the p < 0.05 level

Descriptor JIA Group (n = 19) Control Group (n = 20) χ2 p

n % n %

Sex
  Male 6 32 6 30 0.011 0.915

  Female 13 68 14 70

Race
  Black 1 5 2 10 0.308 0.579

  White 18 95 18 90

Ethnicity
  Hispanic/Latino 6 32 7 35 0.051 0.821

  Not Hispanic/Latino 13 68 13 65

Mean SD Mean SD t p
Age (years) 15.0 1.4 14.3 1.4 1.636 0.110

BMI percentile 57.5 28.2 57.5 27.1 0.003 0.998

Pain Visual Analog Scale 2.1 2.1 0.5 1.0 −3.229 0.003*
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Related pathways may also be promising areas of study 
for further research about disease prevention, patho-
genesis, and management. The groups’ proportions of 
sex, race, and ethnicity are consistent with the general 

population of JIA patients in the central Texas area, and 
the diverse sample contained a higher percentage of 
racial and ethnic minorities than in samples reported 
from other parts of the country [31].

Fig. 1  Box Plots of Metabolites Significantly Different Between JIA and Control Groups (p < 0.05). Metabolites were centered, scaled, and 
standardized prior to analysis
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Metabolites
Our findings underscore the need for sensitive, specific 
biomarkers that detect preclinical changes related to JIA. 
The plasma metabolites that differed between the JIA 
and control groups suggest disturbances in antioxidant 
metabolism and oxidative stress; neurological health; and 
energy, amino acid, and caffeine metabolism. We found 
similarities between the JIA and rheumatoid arthritis 
metabolomes in previous literature, but our findings also 
suggest differences that warrant independent investiga-
tion, prevention strategies, and treatment options for 
adolescents [12, 32–34].

Amino acid metabolism overall was disrupted in our 
JIA group. In both our JIA findings and previous stud-
ies of arthritis, most observed a decrease in circulat-
ing amino acids overall, which may reflect an increased 
uptake into inflamed tissue like the synovium [34–39]. 
Specifically, plasma serine was the strongest amino acid 
predictor in our samples, at 27 times lower in the JIA 
group than in the control group. Serine is important 
to brain health, intracellular energy metabolism, and 
antioxidant activity [40–42]. Supplementary Table  2 
summarizes the existing evidence about serine metabo-
lism in rheumatoid arthritis, osteoarthritis, and related 
conditions [43–49] because no prior studies were 
found about serine metabolism in JIA. The glycine-
serine-threonine metabolic pathways were significantly 
enriched in previous studies that measured metabo-
lomics in the serum, plasma, urine, and synovial fluid of 
animal and human models of rheumatoid arthritis [43, 
44, 47, 49], osteoarthritis [46, 48], ankylosing spondyli-
tis [49], and other related immune-mediated inflamma-
tory diseases [43].

We consider these glycine-serine-threonine findings to 
be relevant for two reasons. First, metabolomics research 
is a frontier that is only beginning to be explored in JIA, 
and even though the sample is small, our results align 
with previous work from adults with arthritis in that 
amino acid metabolism is dysregulated; and that in most 
studies, circulating amino acid levels, such as serine, 
were substantially lower in JIA than in healthy controls. 
Because the serine was remarkably depleted across all JIA 
participants, despite heterogenous subtypes and medica-
tion regimens, it may be useful as a potential diagnostic 
biomarker. Findings should be confirmed with additional 
samples that are powered to detect differences between 
subgroups of JIA participants.

Second, these results suggest a focus on the glycine-
serine-threonine metabolic pathway amongst the myriad 
other potential amino acids and pathways that could be 
studied. Since the glycine-serine-threonine pathway is 
involved in collagen repair in inflamed tissues, serine 
may be an important component of tissue repair in the 
synovial fluid of the inflamed joint or involved in the 
body’s response to systemic inflammation [35]. As such, 
it may be useful to study mechanisms of replenishing ser-
ine supply to ensure efficient and effective tissue repair. 
Additional research is warranted, perhaps incorporating 
multi-omics methods, to fully understand the potential 
therapeutic benefits of targeting the glycine-serine-thre-
onine metabolic pathway in adolescents with JIA.

NAA, a nervous system-specific metabolite, was 
another strong differentiator between the JIA and control 
groups in our study. NAA is the second most abundant 
metabolite in the brain after glutamate, is a marker for 
neurological health, and is involved in energy metabolism 

Table 2  Overview of the Metabolites Identified as Significantly Different (adjusted p  < 0.05) in Adolescents with Juvenile Arthritis 
Relative to Controls

a From Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vásquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 
2018;46(D1):D608–17

Metabolite Categorya Integrated Peak Area for JIA 
Group Relative to Control 
Group

Alpha-glucose Hexose—a monosaccharide in which the sugar unit is a six-carbon containing 
moiety.

↓

Alpha-ketoglutarate (a.k.a. oxog-
lutaric acid, alpha-ketoglutarate)

Gamma keto acids and derivatives, integral part of the tricarboxylic acid (TCA) cycle, 
a key part of aerobic metabolism.

↓

Glycine Nonessential amino acid involved in the body’s production of DNA, phospholipids, 
and collagen, and in the release of energy.

↑

Cystine Formed from two cysteine molecules joined together, found in hair, skin, and 
nails; cysteine is a sulfur-containing alpha amino acid found in most proteins and 
contains a thiol group.

↑

Serine Conditionally essential amino acid derived from glycine. ↓
N-acetylaspartate Derivative of aspartic acid, a nonessential amino acid made from glutamic acid; may 

provide resistance to fatigue and promote endurance.
↓
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Table 3  Integrated Peak Areas of Metabolites Identified from Blood Samples in Adolescents with Juvenile Arthritis vs Controls

Metabolite JIA Control ∆ (JIA Relative to Control)

Mean SD Mean SD Mean Difference % Difference

2-hydroxypyridine . . 3.98e+ 5 2.13e+ 5 −3.98e+ 05 **

3-aminoisobutanoate . . 7.05e+ 7 1.81e+ 7 −7.05e+ 07 **

3-hydroxykynurenine 6.09e+ 5 2.41e+ 5 6.86e+ 5 4.14e+ 5 − 7.70e+ 04 −11%

3-methylglutaric acid 3.57e+ 6 9.5e+ 5 . . + 3.57e+ 06 **

3-ureidopropionate . . 2.77e+ 6 5.71e+ 5 −2.77e+ 06 **

4-guanidinobutanoate 1e+ 6 5.61e+ 5 9.98e+ 5 8.23e+ 5 + 2.00e+ 03 0%

5, 6-dihydrouracil 1.11e+ 7 1.76e+ 6 1.12e+ 7 1.47e+ 6 −1.00e+ 05 − 1%

5-aminolevulinic acid . . 1.87e+ 7 6.05e+ 6 −1.87e+ 07 **

5-methylcytosine 5.95e+ 5 2.05e+ 5 6.38e+ 5 2.19e+ 5 −4.30e+ 04 −7%

5-oxolproline 3.25e+ 8 6.39e+ 7 3.38e+ 8 4.92e+ 7 −1.30e+ 07 − 4%

Acetyl-carnitine 1.13e+ 9 3.66e+ 8 1.31e+ 9 3.3e+ 8 −1.80e+ 08 − 14%

Acetyl-lysine 5.41e+ 5 2.7e+ 5 . . + 5.41e+ 05 **

Adenine 5.18e+ 5 1.77e+ 5 4.99e+ 5 2.81e+ 5 + 1.90e+ 04 4%

Alpha-glucose 2.93e+ 7 3.85e+ 6 3.71e+ 7 7.42e+ 6 −7.80e+ 06 −21%±

Alpha-ketoglutarate 3.38e+ 7 7.64e+ 6 4.63e+ 7 7.85e+ 6 −1.25e+ 07 − 27%±

Arginine 1.05e+ 8 2.42e+ 7 1.02e+ 8 1.79e+ 7 + 3.00e+ 06 3%

Asparagine 1.11e+ 7 3.07e+ 6 1.06e+ 7 3.25e+ 6 + 5.00e+ 05 5%

Beta-alanine 1.82e+ 8 3.74e+ 7 1.87e+ 8 3.66e+ 7 − 5.00e+ 06 −3%

Betaine 7.47e+ 8 2.29e+ 8 7.93e+ 8 1.97e+ 8 −4.60e+ 07 −6%

Carnitine 1.35e+ 9 2.04e+ 8 1.28e+ 9 1.44e+ 8 + 7.00e+ 07 5%

Citrate 5.11e+ 8 1.44e+ 8 7.66e+ 8 1.85e+ 8 −2.55e+ 08 −33%

Citrulline 4.7e+ 7 8.54e+ 6 5.43e+ 7 9.93e+ 6 −7.30e+ 06 −13%

CMP 3.81e+ 5 3.12e+ 5 . . + 3.81e+ 05 **

Creatine 4.2e+ 8 1.74e+ 8 4.05e+ 8 1.78e+ 8 + 1.50e+ 07 4%

Creatinine 3.39e+ 8 5.66e+ 7 3.41e+ 8 5.12e+ 7 −2.00e+ 06 −1%

Cystine 8.58e+ 6 3.66e+ 6 4.51e+ 6 1.65e+ 6 + 4.07e+ 06 90%±

Cytidine 7.85e+ 5 5.72e+ 5 5.91e+ 5 5.59e+ 5 + 1.94e+ 05 33%

Deoxycarnitine 8.06e+ 7 1.35e+ 7 7.71e+ 7 1.44e+ 7 + 3.50e+ 06 5%

Fumarate 1.93e+ 6 5.89e+ 5 2.21e+ 6 6.47e+ 5 −2.80e+ 05 −13%

Glutamic acid . . 1.36e+ 7 3.98e+ 6 −1.36e+ 07 **

Glutamine 2.88e+ 8 3.8e+ 7 3.06e+ 8 4.28e+ 7 −1.80e+ 07 −6%

Glutarate 3.39e+ 6 2.07e+ 6 . . + 3.39e+ 06 **

Glycerol 2.14e+ 7 1.01e+ 7 2.6e+ 7 9.92e+ 6 −4.60e+ 06 −18%

Glycine 1.73e+ 7 5e+ 6 1.26e+ 7 2.36e+ 6 + 4.70e+ 06 37%±

Guanosine 7.21e+ 6 3.28e+ 6 7.07e+ 6 3.66e+ 6 + 1.40e+ 05 2%

Histidine 5.09e+ 7 6.42e+ 6 5.64e+ 7 8.73e+ 6 −5.50e+ 06 −10%

Homocysteine 1.96e+ 7 1.42e+ 7 2.52e+ 7 1.71e+ 7 − 5.60e+ 06 −22%

Inosine 4.76e+ 7 2.18e+ 7 4.66e+ 7 2.57e+ 7 + 1.00e+ 06 2%

Isocitric acid . . 1.93e+ 7 3.82e+ 6 −1.93e+ 07 **

Isoleucine 3.51e+ 9 4.35e+ 8 3.63e+ 9 6.72e+ 8 −1.20e+ 08 −3%

Kynurenine 8.73e+ 6 3.14e+ 6 1.06e+ 7 1.23e+ 7 −1.87e+ 06 − 18%

Lactate 1.76e+ 9 4.64e+ 8 2.16e+ 9 6.69e+ 8 −4.00e+ 08 − 19%

Leucine 7.31e+ 9 6.18e+ 8 7.84e+ 9 1.38e+ 9 −5.30e+ 08 −7%

Lysine . . 1.54e+ 8 1.7e+ 7 −1.54e+ 08 **

Malate 3.15e+ 7 6.73e+ 6 3.86e+ 7 5.71e+ 6 −7.10e+ 06 −18%

Methionine 1.15e+ 9 1.51e+ 8 1.22e+ 9 1.37e+ 8 −7.00e+ 07 −6%

Methyl-histidine 1.28e+ 7 6.66e+ 6 1.03e+ 7 5.64e+ 6 + 2.50e+ 06 24%

Myristic acid 2.21e+ 5 1.5e+ 5 3.69e+ 5 1.35e+ 5 −1.48e+ 05 −40%
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in the neuronal cells [35]. Although plasma metabo-
lites are easier and less costly to measure, most studies 
of NAA measure brain tissue metabolite levels using 
proton magnetic resonance spectroscopy, or 1H-MRS. 
[50–60] Neither brain 1H-MRS-measured levels of NAA 
nor circulating plasma concentrations of NAA have been 
previously described in patients with JIA. The role and 
function of NAA as a marker of health in the peripheral 
nervous system is unclear and is understudied.

Supplementary Table 3 summarizes the evidence about 
brain NAA levels in arthritis and related conditions like 
fibromyalgia or systemic lupus erythematosus. Brain 
NAA levels, sometimes reported as a ratio with creati-
nine or choline levels, were lower in those with arthritis 
and related disease states in comparison with healthy 
controls [50–60]. Low NAA, low NAA/creatinine, or 
low NAA/choline have previously been associated with 
higher disease severity and worse outcomes (i.e. death, 
poor cerebellar function, depression, pain, and migraine) 
[53–60]. Post-hoc analysis revealed that the NAA/creati-
nine ratio was significantly lower in adolescents with JIA 

than in controls, t(37) = 7.192, p  < 0.0001. Choline was 
not detected in our samples. Future studies should inves-
tigate the relationships between NAA/creatinine and 
NAA/choline ratios and JIA outcomes.

NAA levels have been observed to normalize after 
surgical resolution of osteoarthritis, fibromyalgia flares, 
or post-rheumatic fever [59, 61]. The normalization 
response after flares of inflammation suggests a revers-
ible mechanism linked to mitochondrial dysfunction 
[58]. This mechanistic theory is extended by recent work 
on aspartate by Wu et  al. [61], although they did not 
measure or report on NAA directly. Wu et al. identified 
a reversible mitochondrial deficiency in aspartate pro-
duction in the synovial fluid T-cells of arthritic joints and 
considered this dysfunction to be significant in arthri-
tis pathogenesis. Given that aspartate is an amino acid, 
this concept aligns with our findings that amino acid 
metabolism overall is dysregulated in JIA. It also aligns 
with the suggestion that decreased levels of circulating 
amino acids reflect an increased uptake into inflamed 
synovial tissue [33, 37], perhaps in part to compensate for 

± adjusted p < 0.05

**detected in one group only

Table 3  (continued)

Metabolite JIA Control ∆ (JIA Relative to Control)

Mean SD Mean SD Mean Difference % Difference

N-acetyl-alanine . . 1.17e+ 7 1.1e+ 6 −1.17e+ 07 **

N-acetyl-aspartate 1.5e+ 6 2.34e+ 5 3.01e+ 6 4.5e+ 5 −1.51e+ 06 −50%±

N-acetyl-glycine 1.68e+ 7 8.35e+ 6 1.84e+ 7 6.24e+ 6 −1.60e+ 06 − 9%

N-acetyl-methionine 1.82e+ 6 7.04e+ 5 1.75e+ 6 3.67e+ 5 + 7.00e+ 04 4%

N-acetyl-phenylalanine 1.69e+ 5 1.31e+ 5 . . + 1.69e+ 05 **

N-acetyl-putrescine 2.11e+ 6 3.79e+ 5 2.33e+ 6 5.17e+ 5 −2.20e+ 05 −9%

N-acetyl-serine 3.97e+ 6 5.16e+ 5 4.5e+ 6 6.29e+ 5 −5.30e+ 05 −12%

Ornithine 5.41e+ 7 1.61e+ 7 . . + 5.41e+ 07 **

Pantothenic acid 7.56e+ 6 4.02e+ 6 7.23e+ 6 2.64e+ 6 + 3.30e+ 05 5%

Phenylalanine 4.68e+ 9 3.38e+ 8 5.01e+ 9 4.1e+ 8 −3.30e+ 08 −7%

Pipecolate 2.97e+ 8 1.77e+ 8 3.73e+ 8 3.56e+ 8 − 7.60e+ 07 − 20%

Proline 1.56e+ 9 3.41e+ 8 1.89e+ 9 5.3e+ 8 − 3.30e+ 08 −17%

Pyridoxal . . 8.56e+ 5 3.82e+ 5 −8.56e+ 05 **

Ribose-5-phosphate 7.47e+ 5 2.63e+ 5 7.62e+ 5 2.44e+ 5 −1.50e+ 04 −2%

Serine 2.76e+ 5 1.36e+ 5 7.47e+ 6 1.21e+ 6 −7.19e+ 06 −96%±

Spermidine 8.1e+ 6 4.13e+ 6 7.77e+ 6 4.17e+ 6 + 3.30e+ 05 4%

Succinate 4.36e+ 7 1e+ 7 4.88e+ 7 9.73e+ 6 −5.20e+ 06 −11%

Taurine . . 9.82e+ 6 3.41e+ 6 −9.82e+ 06 **

Theobromine 2.04e+ 8 4.93e+ 8 . . + 2.04e+ 08 **

Threonine 8.05e+ 7 1.99e+ 7 8.39e+ 7 1.4e+ 7 −3.40e+ 06 −4%

Trans-aconitate 2.32e+ 6 8.61e+ 5 2.85e+ 6 7.49e+ 5 −5.30e+ 05 −19%

Tyrosine 2.07e+ 9 3.15e+ 8 2.31e+ 9 3.45e+ 8 −2.40e+ 08 − 10%

Uracil 1.49e+ 6 4.72e+ 5 2.03e+ 6 5.37e+ 5 −5.40e+ 05 − 27%

Urocanate 8.31e+ 6 5.09e+ 6 9.99e+ 6 6.89e+ 6 −1.68e+ 06 − 17%
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mitochondrial deficiency in the synovial immune cells. 
Since we did not detect aspartate in our samples, future 
targeted work that measures both aspartate and NAA, 
comparing synovial fluid and blood, may provide more 
insight. Further, multi-omics approaches that define the 
interactions between the production and regulation of 
amino acids, enzymes catalyzing the aspartate and NAA 
metabolic pathways, and other relevant mitochondrial 
proteins may provide a more complete picture of the 
mechanism of dysfunction.

Chronically depressed brain NAA levels may signal 
irreversible nerve damage and grave prognoses, as has 
been described in patients with fatal systemic lupus 
erythematosus [52]. The evidence is mixed about how 
circulating NAA levels may be related to brain NAA 

levels, and more studies need to be done [62, 63]. 
However, it is possible that both circulating and brain 
tissue NAA levels that do not normalize after an acute 
injury or flare may be a useful biomarker of prognosis 
in JIA.

The 23 metabolites found to be significantly different 
between groups, including those detected in only one 
group, collectively narrow the focus for future precision 
health research. Together, pathway enrichment analysis 
indicates that the pathways implicated by our findings are 
consistent with previous studies in rheumatoid arthritis 
[35, 38, 64, 65]. Our findings also add new information 
unique to adolescents with JIA.

It is important to note that the sample of adolescents in 
this study was representative of the self-identified Black 
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Fig. 2  MetaboAnalyst 5.0 Pathway Enrichment Analysis for Metabolites Significantly Different Between Groups (p < 0.05). The enrichment ratio is 
calculated as the number of hits within a particular metabolic pathway divided by the expected number of hits. See the MetaboAnalyst 5.0 website 
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race and Hispanic/Latinx ethnicity populations in Texas 
[31], groups that are historically underrepresented in clin-
ical research [66]. As such, this study contributes begin-
ning evidence toward future precision health research that 
differentiates between racial and ethnic groups. Racially 
and ethnically diverse samples of adolescents are essential 
to the generalizability of precision health research [66]. 
Defining the metabolome based on self-identified race 
or ethnicity may provide scant evidence of genomic dif-
ferences since it is not a measure of genetic ancestry [67]. 
However, categorization based on race or ethnicity may 
advance our understanding of an individual’s physiologic 
response to their environment. This is because metabo-
lomic characteristics are downstream from epigenomic 
and transcriptomic systems of differential gene expression 
[68]. Self-identified race and ethnicity classification may 
also be useful for psychosocial phenotyping as a comple-
mentary approach to precision medicine [69].

Limitations
This snapshot of fasting morning metabolism adds new 
information that may potentially inform future studies. 
However, this was a cross-sectional study of participants 
at a single time point; a design with repeated measures 
may provide more information about how metabolites 
and outcomes may change over time [69]. Due to our 
small overall and subgroup sample sizes, the findings 
should be confirmed in a larger sample of adolescents.

Maturational hormones are known to affect metabo-
lomics findings, but the literature is sparse on the specific 
metabolites that vary during maturation in adolescents 
beyond those directly related to sex hormone metabo-
lism pathways [70, 71]. We kept the age range narrow for 
this study to reduce variation due to maturational stage, 
because it was impracticable to measure Tanner stages 
in our control group. To account for differences, we con-
trolled for age and sex in the generalized linear model. 
All females reported onset of menarche prior to the study 
visit. Nonetheless, it is unknown to what degree matura-
tion hormones contributed to the findings.

Participants in both groups reported taking multiple 
medications, vitamins, or supplements during the 7 days 
prior to their study visit. Future studies might consider 
standardization of medications as inclusion criteria, a 
washout period (when appropriate) within days prior to 
the study visit, or both. Future studies might consider 
incorporating additional comparison groups: either par-
ticipants with new onset JIA who are naïve to treatment 
or those with JIA in remission who are not taking any 
medications could be compared with heathy controls, or 
one could use a three-group design.

Finally, there are limitations inherent to mass spec-
trometry analysis of plasma samples. Circulating 
metabolites in the plasma are not direct measures of 
mitochondrial or intracellular metabolism. To fully 
understand any mitochondrial dysfunction, additional 
studies should be conducted with targeted metabo-
lomics. Untargeted analysis does not allow us to pro-
vide absolute concentrations of metabolites in the 
blood. Additional validation studies will be required 
before new metabolite biomarkers are appropriate for 
clinical use.

Conclusions
In this study, we have identified a distinct set of metab-
olites in adolescents with JIA relative to controls after 
adjusting for age, sex, and medications or supplements. 
The study sample was more representative of the gen-
eral population than samples in prior research, with 
more non-White diversity than in previous metabo-
lomic studies of adolescents with JIA. Serine and NAA 
were sensitive and specific differentiators of JIA and 
control group membership, and they hold promise as 
candidate biomarkers for further research. The impli-
cated pathways suggest differences in oxidative stress, 
neurological health, energy, caffeine, and amino acid 
metabolism.

Our findings support continued study with a larger 
sample, because our results with adolescents were 
both similar to yet different from those reported previ-
ously in adults with rheumatoid arthritis. Future stud-
ies should expand the age groups to include all children 
diagnosed with JIA to fully describe the metabolites 
across maturation stages and should incorporate more 
new-onset JIA patients who are in active disease and 
naïve to treatment. In addition, future research should 
consider a three-group repeated measures design that 
incorporates patients naïve to treatment compared with 
controls and adolescents with inactive disease. Finally, 
the integration of the plasma metabolome findings with 
genomics, transcriptomics, or epigenomics may fur-
ther elucidate sources of pathway disruption to advance 
our understanding of systems biology. The findings of 
this study indicate that sensitive, specific measures of 
JIA for racially and ethnically diverse adolescents are 
still needed, and that metabolomics may be a promising 
methodology for this purpose.

Abbreviations
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Juvenile idiopathic arthritis; NAA: N-acetylaspartate or N-acetyl-aspartic acid.
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